Friday, January 17. 2025Private Keys in the Fortigate Leak
A few days ago, a download link for a leak of configuration files for Fortigate/Fortinet devices was posted on an Internet forum. It appears that the data was collected in 2022 due to a security vulnerability known as CVE-2022-40684. According to a blog post by Fortinet in 2022, they were already aware of active exploitation of the issue back then. It was first reported by heise, a post by Kevin Beaumont contains further info.
What has not been widely recognized is that this leak also contains TLS and SSH private keys. As I am developing badkeys, a tool to identify insecure and compromised keys, this caught my attention. (The following analysis is based on an incomplete subset of the leak. I may update the post if I get access to more complete information.) The leaked configurations contain keys looking like this (not an actual key from the leak): set private-key "-----BEGIN ENCRYPTED PRIVATE KEY----- MIGjMF8GCSqGSIb3DQEFDTBSMDEGCSqGSIb3DQEFDDAkBBC5oRB/b9iViG5YoFmw 03T1AgIIADAMBggqhkiG9w0CCQUAMB0GCWCGSAFlAwQBKgQQPsMiXQoINAe2uBZX cbB1MARAXz1LwSJhElDvazEtfywe9pLSdCG9+A0G6CMk2Lp5eR954OjScEQY6Zqe 9J3V/fCQeDanrAE+/dpCefjAD4LhGg== -----END ENCRYPTED PRIVATE KEY-----"They also include corresponding certificates and keys in OpenSSH format. As you can see, these private keys are encrypted. However, above those keys, we can find the encryption password. The password is also encrypted, looking like this: set password ENC SGFja1RoZVBsYW5ldCF[...]UA==A quick search for the encryption method turned up a script containing code to decrypt these passwords. The encryption key is static and publicly known. The password line contains a Base64 string that decodes to 148 bytes. The first four bytes, padded with 12 zero bytes, are the initialization vector. The remaining bytes are the encrypted payload. The encryption uses AES-128 in CBC mode. The decrypted passwords appear to be mostly hex numbers and are padded with zero bytes - and sometimes other characters. (I am unaware of their meaning.) In case I lost you here with technical details, the important takeaway is that in almost all cases, it is possible to decrypt the private key. (I may share a tool to extract the keys at a later point in time.) The use of a static encryption key is a known vulnerability, tracked as CVE-2019-6693. According to Fortinet's advisory from 2020, this was "fixed" by introducing a setting that allows to configure a custom password. "Fixing" default passwords by providing and documenting an option to change the password is something I have strong opinions about. It does not work (see also). One result of this incident is that it gives us some real-world data on how many people will actually change their password if the option is given to them and documented in a security advisory. 99,5% of the keys could be decrypted with the default password. (Consider this as a lower bound and not an exact number. The password decryption may be flaky due to the unclear padding mechanism.) Overall, there were around 100,000 private keys in PKCS format and 60,000 in OpenSSH format. Most of the corresponding certificates were self-signed, but a few thousand were issued by publicly trusted web certificate authorities, most of them expired. However, the data included keys for 84 WebPKI certificates that were neither expired nor revoked as of this morning. Only 10 unexpired certificates were already revoked. I have reported the still valid certificates to the responsible certificate authorities for revocation. CAs are obliged to revoke certificates with known-compromised keys within 24 hours. Therefore, these certificates will all be revoked soon. (I also filed two reports due to difficulties with the reporting process of some CAs.) As mentioned above, it was already known in 2022 that this vulnerabiltiy was actively exploited. Yet, it appears that, overwhelmingly, this did not lead to people replacing their likely compromised private keys and revoking their certificates. While we cannot tell from this observation whether the same is true for passwords and other private keys not used in publicly trusted certificates, it appears likely. Rant It is an unfortunate reality that these days, security products often are themselves the source of security vulnerabilities. While I have no empirical evidence for this (and nobody else has the data, have I complained about this before?), I believe that we have entered a situation in recent years where security products turned from "mostly useless, sometimes harmful" to "almost certainly causing more security issues than they prevent". I have more thoughts on this that I may share at another time. If you are wondering what to do, the solution is neither to patch and fix your Fortinet device nor to buy additional attack surface from one of its equally bad competitors. It is to stop believing that adding more attack surface will increase security. Detecting affected keys Detection for those keys has been added to badkeys. It is an open source tool, installable via Python's package management. You can use it to scan SSH host keys, certificates, or private keys. Make sure to update the badkeys blocklist (badkeys --update-bl) before doing so. Please note that this detection is currently based on incomplete data and does not cover all keys in the leak. More updates with more complete coverage may come. Please also note that I have not made the private keys public. Unlike in other cases, this means badkeys cannot give you the private key. (I may decide to publish the keys at some point in the future.) The badkeys blocklist uses a yet poorly documented format (it is on my todo list to improve this). I am sharing a list of SPKI SHA256 hashes of the affected keys to make it easier for others to write their own detection. Image source: paomedia / Public Domain
Posted by Hanno Böck
in Code, Cryptography, English, Security
at
17:04
| Comments (0)
| Trackbacks (0)
Monday, February 5. 2024How to create a Secure, Random Password with JavaScript
I recently needed to create a random password in a piece of JavaScript code. It was surprisingly difficult to find instructions and good examples of how to do that. Almost every result that Google, StackOverflow, or, for that matter, ChatGPT, turned up was flawed in one way or another.
Let's look at a few examples and learn how to create an actually secure password generation function. Our goal is to create a password from a defined set of characters with a fixed length. The password should be generated from a secure source of randomness, and it should have a uniform distribution, meaning every character should appear with the same likelihood. While the examples are JavaScript code, the principles can be used in any programming language. One of the first examples to show up in Google is a blog post on the webpage dev.to. Here is the relevant part of the code:
In this example, the source of randomness is the function Math.random(). It generates a random number between 0 and 1. The documentation of Math.random() in MDN says:Math.random() does not provide cryptographically secure random numbers. Do not use them for anything related to security. Use the Web Crypto API instead, and more precisely, the window.crypto.getRandomValues() method. This is pretty clear: We should not use Math.random() for security purposes, as it gives us no guarantees about the security of its output. This is not a merely theoretical concern: here is an example where someone used Math.random() to generate tokens and ended up seeing duplicate tokens in real-world use. MDN tells us to use the getRandomValues() function of the Web Crypto API, which generates cryptographically strong random numbers. We can make a more general statement here: Whenever we need randomness for security purposes, we should use a cryptographically secure random number generator. Even in non-security contexts, using secure random sources usually has no downsides. Theoretically, cryptographically strong random number generators can be slower, but unless you generate Gigabytes of random numbers, this is irrelevant. (I am not going to expand on how exactly cryptographically strong random number generators work, as this is something that should be done by the operating system. You can find a good introduction here.) All modern operating systems have built-in functionality for this. Unfortunately, for historical reasons, in many programming languages, there are simple and more widely used random number generation functions that many people use, and APIs for secure random numbers often come with extra obstacles and may not always be available. However, in the case of Javascript, crypto.getRandomValues() has been available in all major browsers for over a decade. After establishing that we should not use Math.random(), we may check whether searching specifically for that gives us a better answer. When we search for "Javascript random password without Math.Random()", the first result that shows up is titled "Never use Math.random() to create passwords in JavaScript". That sounds like a good start. Unfortunately, it makes another mistake. Here is the code it recommends:
This generates a random 32-bit unsigned integer with crypto.getRandomValues(), which is good. It divides that by the hexadecimal value 0x100000000, which is the upper bound of the possible values in a 32-bit unsigned integer. In other words, it is converting to a float between 0 and 1, likely trying to emulate what Math.random() provides.The problem with this approach is that it uses floating-point numbers. It is generally a good idea to avoid floats in security and particularly cryptographic applications whenever possible. Floats introduce rounding errors, and due to the way they are stored, it is practically almost impossible to generate a uniform distribution. (See also this explanation in a StackExchange comment.) Therefore, while this implementation is better than the first and probably "good enough" for random passwords, it is not ideal. It does not give us the best security we can have with a certain length and character choice of a password. Another way of mapping a random integer number to an index for our list of characters is to use a random value modulo the size of our character class. Here is an example from a StackOverflow comment:
This is also not ideal. It introduces a modulo bias.The modulo bias in this example is quite small, so let's look at a different example. Assume we use letters and numbers (a-z, A-Z, 0-9, 62 characters total) and take a single byte (256 different values, 0-255) r from the random number generator. If we use the modulus r % 62, some characters are more likely to appear than others. The reason is that 256 is not a multiple of 62, so it is impossible to map our byte to this list of characters with a uniform distribution. In our example, the lowercase "a" would be mapped to five values (0, 62, 124, 186, 248). The uppercase "A" would be mapped to only four values (26, 88, 150, 212). Some values have a higher probability than others. (For more detailed explanations of a modulo bias, check this post by Yolan Romailler from Kudelski Security and this post from Sebastian Pipping.) One way to avoid a modulo bias is to use rejection sampling. The idea is that you throw away the values that cause higher probabilities. In our example above, 248 and higher values cause the modulo bias, so if we generate such a value, we repeat the process. A piece of code to generate a single random character could look like this:
Values equal or above limit get thrown away. The limit is set to the number of possible values in a byte modulo the number of different characters we want to use. We generate a random byte, and if it is above the limit, we will just repeat that process until we get a suitable value.An alternative to rejection sampling is to make the modulo bias so small that it does not matter (by using a very large random value). However, I find rejection sampling to be a much cleaner solution. If you argue that the modulo bias is so small that it does not matter, you must carefully analyze whether this is true. For a password, a small modulo bias may be okay. For cryptographic applications, things can be different. Rejection sampling avoids the modulo bias completely. Therefore, it is always a safe choice. There are two things you might wonder about this approach. One is that it introduces a timing difference. In cases where the random number generator turns up multiple numbers in a row that are thrown away, the code runs a bit longer. Timing differences can be a problem in security code, but this one is not. It does not reveal any information about the password because it is only influenced by values we throw away. Even if an attacker were able to measure the exact timing of our password generation, it would not give him any useful information. (This argument is however only true for a cryptographically secure random number generator. It assumes that the ignored random values do not reveal any information about the random number generator's internal state.) Another issue with this approach is that it is not guaranteed to finish in any given time. Theoretically, the random number generator could produce numbers above our limit so often that the function stalls. However, the probability of that happening quickly becomes so low that it is irrelevant. Such code is generally so fast that even multiple rounds of rejection would not cause a noticeable delay. To summarize: If we want to write a secure, random password generation function, we should consider three things: We should use a secure random number generation function. We should avoid floating point numbers. And we should avoid a modulo bias. Taking this all together, here is a Javascript function that generates a 15-character password, composed of ASCII letters and numbers:
We first define our length and string of possible characters. We calculate the limit for the modulo bias. We run a for loop 15 times. Inside that loop, we have a while loop generating a random byte and implementing rejection sampling. Finally, we use the generated random value modulo the number of possible characters as our index. Overall, this is just 15 lines of code, and it is not particularly complicated.If you want to use that code, feel free to do so. I have published it - and a slightly more configurable version that allows optionally setting the length and the set of characters - under a very permissive license (0BSD license). An online demo generating a password with this code can be found at https://password.hboeck.de/. All code is available on GitHub. Image Source: SVG Repo, CC0
Posted by Hanno Böck
in Code, Cryptography, English, Security, Webdesign
at
15:23
| Comments (0)
| Trackbacks (0)
Monday, April 13. 2020Generating CRIME safe CSRF Tokens
For a small web project I recently had to consider how to generate secure tokens to prevent Cross Site Request Forgery (CSRF). I wanted to share how I think this should be done, primarily to get some feedback whether other people agree or see room for improvement.
I am not going to discuss CSRF in general here, I will generally assume that you are aware of how this attack class works. The standard method to protect against CSRF is to add a token to every form that performs an action that is sufficiently random and unique for the session. Some web applications use the same token for every request or at least the same token for every request of the same kind. However this is problematic due to some TLS attacks. There are several attacks against TLS and HTTPS that work by generating a large number of requests and then slowly learning about a secret. A common target of such attacks are CSRF tokens. The list of these attacks is long: BEAST, all Padding Oracle attacks (Lucky Thirteen, POODLE, Zombie POODLE, GOLDENDOODLE), RC4 bias attacks and probably a few more that I have forgotten about. The good news is that none of these attacks should be a concern, because they all affect fragile cryptography that is no longer present in modern TLS stacks. However there is a class of TLS attacks that is still a concern, because there is no good general fix, and these are compression based attacks. The first such attack that has been shown was called CRIME, which targeted TLS compression. TLS compression is no longer used, but a later attack called BREACH used HTTP compression, which is still widely in use and which nobody wants to disable, because HTML code compresses so well. Further improvements of these attacks are known as TIME and HEIST. I am not going to discuss these attacks in detail, it is sufficient to know that they all rely on a secret being transmitted again and again over a connection. So CSRF tokens are vulnerable to this if they are the same over multiple connections. If we have an always changing CSRF token this attack does not apply to it. An obvious fix for this is to always generate new CSRF tokens. However this requires quite a bit of state management on the server or other trade-offs, therefore I don’t think it’s desirable. Rather a good concept would be to keep a single server-side secret, but put some randomness in so the token changes on every request. The BREACH authors have the following brief recommendation (thanks to Ivan Ristic for pointing this out): “Masking secrets (effectively randomizing by XORing with a random secret per request)”. I read this as having a real token and a random value and the CSRF token would look like random_value + XOR(random_value, real_token). The server could verify this by splitting up the token, XORing the first half with the second and then comparing that to the real token. However I would like to add something: I would prefer if a token used for one form and action cannot be used for another action. In case there is any form of token exfiltration it seems reasonable to limit the utility of the token as much as possible. My idea is therefore to use a cryptographic hash function instead of XOR and add a scope string. This could be something like “adduser”, “addblogpost” etc., anything that identifies the action. The server would keep a secret token per session on the server side and the CSRF token would look like this: random_value + hash(random_value + secret_token + scope). The random value changes each time the token is sent. I have created some simple PHP code to implement this (if there is sufficient interest I will learn how to turn this into a composer package). The usage is very simple, there is one function to create a token that takes a scope string as the only parameter and another to check a token that takes the public token and the scope and returns true or false. As for the implementation details I am using 256 bit random values and secret tokens, which is excessively too much and should avoid any discussion about them being too short. For the hash I am using sha364, which is widely supported and not vulnerable to length extension attacks. I do not see any reason why length extension attacks would be relevant here, but still this feels safer. I believe the order of the hash inputs should not matter, but I have seen constructions where having The CSRF token is Base64-encoded, which should work fine in HTML forms. My question would be if people think this is a sane design or if they see room for improvement. Also as this is all relatively straightforward and obvious, I am almost sure I am not the first person to invent this, pointers welcome. Now there is an elephant in the room I also need to discuss. Form tokens are the traditional way to prevent CSRF attacks, but in recent years browsers have introduced a new and completely different way of preventing CSRF attacks called SameSite Cookies. The long term plan is to enable them by default, which would likely make CSRF almost impossible. (These plans have been delayed due to Covid-19 and there will probably be some unfortunate compatibility trade-offs that are reason enough to still set the flag manually in a SameSite-by-default world.) SameSite Cookies have two flavors: Lax and Strict. When set to Lax, which is what I would recommend that every web application should do, POST requests sent from another host are sent without the Cookie. With Strict all requests, including GET requests, sent from another host are sent without the Cookie. I do not think this is a desirable setting in most cases, as this breaks many workflows and GET requests should not perform any actions anyway. Now here is a question I have: Are SameSite cookies enough? Do we even need to worry about CSRF tokens any more or can we just skip them? Are there any scenarios where one can bypass SameSite Cookies, but not CSRF tokens? One could of course say “Why not both?” and see this as a kind of defense in depth. It is a popular mode of thinking to always see more security mechanisms as better, but I do not agree with that reasoning. Security mechanisms introduce complexity and if you can do with less complexity you usually should. CSRF tokens always felt like an ugly solution to me, and I feel SameSite Cookies are a much cleaner way to solve this problem. So are there situations where SameSite Cookies do not protect and we need tokens? The obvious one is old browsers that do not support SameSite Cookies, however they have been around for a while and if you are willing to not support really old and obscure browsers that should not matter. A remaining problem I could think of is software that accepts action requests both as GET and POST variables (e. g. in PHP if one uses the $_REQUESTS variable instead of $_POST). These need to be avoided, but using GET for anything that performs actions in the application should not be done anyway. (SameSite=Strict does not really fix his, as GET requests can still plausibly come from links, e. g. on applications that support internal messaging.) Also an edge case problem may be a transition period: If a web application removes CSRF tokens and starts using SameSite Cookies at the same time Users may still have old Cookies around without the flag. So a transition period at least as long as the Cookie lifetime should be used. Furthermore there are bypasses for the SameSite-by-default Cookies as planned by browser vendors, but these do not apply when the web application sets the SameSite flag itself. (Essentially the SameSite-by-default Cookies are only SameSite after two minutes, so there is a small window for an attack after setting the Cookie.) Considering all this if one carefully makes sure that actions can only be performed by POST requests, sets SameSite=Lax on all Cookies and plans a transition period one should be able to safely remove CSRF tokens. Anyone disagrees? Image sources: Piqsels, Wikimedia Commons
Posted by Hanno Böck
in Cryptography, English, Security, Webdesign
at
21:54
| Comments (8)
| Trackbacks (0)
Thursday, September 7. 2017In Search of a Secure Time Source
Update: This blogpost was written before NTS was available, and the information is outdated. If you are looking for a modern solution, I recommend using software and a time server with Network Time Security, as specified in RFC 8915.
All our computers and smartphones have an internal clock and need to know the current time. As configuring the time manually is annoying it's common to set the time via Internet services. What tends to get forgotten is that a reasonably accurate clock is often a crucial part of security features like certificate lifetimes or features with expiration times like HSTS. Thus the timesetting should be secure - but usually it isn't. I'd like my systems to have a secure time. So I'm looking for a timesetting tool that fullfils two requirements:
Although these seem like trivial requirements to my knowledge such a tool doesn't exist. These are relatively loose requirements. One might want to add:
Some people need a very accurate time source, for example for certain scientific use cases. But that's outside of my scope. For the vast majority of use cases a clock that is off by a few seconds doesn't matter. While it's certainly a good idea to consider rogue servers given the current state of things I'd be happy to have a solution where I simply trust a server from Google or any other major Internet entity. So let's look at what we have: NTP The common way of setting the clock is the NTP protocol. NTP itself has no transport security built in. It's a plaintext protocol open to manipulation and man in the middle attacks. There are two variants of "secure" NTP. "Autokey", an authenticated variant of NTP, is broken. There's also a symmetric authentication, but that is impractical for widespread use, as it would require to negotiate a pre-shared key with the time server in advance. NTPsec and Ntimed In response to some vulnerabilities in the reference implementation of NTP two projects started developing "more secure" variants of NTP. Ntimed - a rewrite by Poul-Henning Kamp - and NTPsec, a fork of the original NTP software. Ntimed hasn't seen any development for several years, NTPsec seems active. NTPsec had some controversies with the developers of the original NTP reference implementation and its main developer is - to put it mildly - a controversial character. But none of that matters. Both projects don't implement a "secure" NTP. The "sec" in NTPsec refers to the security of the code, not to the security of the protocol itself. It's still just an implementation of the old, insecure NTP. Network Time Security There's a draft for a new secure variant of NTP - called Network Time Security. It adds authentication to NTP. However it's just a draft and it seems stalled. It hasn't been updated for over a year. In any case: It's not widely implemented and thus it's currently not usable. If that changes it may be an option. tlsdate tlsdate is a hack abusing the timestamp of the TLS protocol. The TLS timestamp of a server can be used to set the system time. This doesn't provide high accuracy, as the timestamp is only given in seconds, but it's good enough. I've used and advocated tlsdate for a while, but it has some problems. The timestamp in the TLS handshake doesn't really have any meaning within the protocol, so several implementers decided to replace it with a random value. Unfortunately that is also true for the default server hardcoded into tlsdate. Some Linux distributions still ship a package with a default server that will send random timestamps. The result is that your system time is set to a random value. I reported this to Ubuntu a while ago. It never got fixed, however the latest Ubuntu version Zesty Zapis (17.04) doesn't ship tlsdate any more. Given that Google has shipped tlsdate for some in ChromeOS time it seems unlikely that Google will send randomized timestamps any time soon. Thus if you use tlsdate with www.google.com it should work for now. But it's no future-proof solution. TLS 1.3 removes the TLS timestamp, so this whole concept isn't future-proof. Alternatively it supports using an HTTPS timestamp. The development of tlsdate has stalled, it hasn't seen any updates lately. It doesn't build with the latest version of OpenSSL (1.1) So it likely will become unusable soon. OpenNTPD The developers of OpenNTPD, the NTP daemon from OpenBSD, came up with a nice idea. NTP provides high accuracy, yet no security. Via HTTPS you can get a timestamp with low accuracy. So they combined the two: They use NTP to set the time, but they check whether the given time deviates significantly from an HTTPS host. So the HTTPS host provides safety boundaries for the NTP time. This would be really nice, if there wasn't a catch: This feature depends on an API only provided by LibreSSL, the OpenBSD fork of OpenSSL. So it's not available on most common Linux systems. (Also why doesn't the OpenNTPD web page support HTTPS?) Roughtime Roughtime is a Google project. It fetches the time from multiple servers and uses some fancy cryptography to make sure that malicious servers get detected. If a roughtime server sends a bad time then the client gets a cryptographic proof of the malicious behavior, making it possible to blame and shame rogue servers. Roughtime doesn't provide the high accuracy that NTP provides. From a security perspective it's the nicest of all solutions. However it fails the availability test. Google provides two reference implementations in C++ and in Go, but it's not packaged for any major Linux distribution. Google has an unfortunate tendency to use unusual dependencies and arcane build systems nobody else uses, so packaging it comes with some challenges. One line bash script beats all existing solutions As you can see none of the currently available solutions is really feasible and none fulfils the two mild requirements of authenticity and availability. This is frustrating given that it's a really simple problem. In fact, it's so simple that you can solve it with a single line bash script: date -s "$(curl -sI https://www.google.com/|grep -i 'date:'|sed -e 's/^.ate: //g')" This line sends an HTTPS request to Google, fetches the date header from the response and passes that to the date command line utility. It provides authenticity via TLS. If the current system time is far off then this fails, as the TLS connection relies on the validity period of the current certificate. Google currently uses certificates with a validity of around three months. The accuracy is only in seconds, so it doesn't qualify for high accuracy requirements. There's no protection against a rogue Google server providing a wrong time. Another potential security concern may be that Google might attack the parser of the date setting tool by serving a malformed date string. However I ran american fuzzy lop against it and it looks robust. While this certainly isn't as accurate as NTP or as secure as roughtime, it's better than everything else that's available. I put this together in a slightly more advanced bash script called httpstime.
Posted by Hanno Böck
in Code, Cryptography, English, Linux, Security
at
17:07
| Comments (6)
| Trackbacks (0)
Thursday, July 20. 2017How I tricked Symantec with a Fake Private Key
Lately, some attention was drawn to a widespread problem with TLS certificates. Many people are accidentally publishing their private keys. Sometimes they are released as part of applications, in Github repositories or with common filenames on web servers.
If a private key is compromised, a certificate authority is obliged to revoke it. The Baseline Requirements – a set of rules that browsers and certificate authorities agreed upon – regulate this and say that in such a case a certificate authority shall revoke the key within 24 hours (Section 4.9.1.1 in the current Baseline Requirements 1.4.8). These rules exist despite the fact that revocation has various problems and doesn’t work very well, but that’s another topic. I reported various key compromises to certificate authorities recently and while not all of them reacted in time, they eventually revoked all certificates belonging to the private keys. I wondered however how thorough they actually check the key compromises. Obviously one would expect that they cryptographically verify that an exposed private key really is the private key belonging to a certificate. I registered two test domains at a provider that would allow me to hide my identity and not show up in the whois information. I then ordered test certificates from Symantec (via their brand RapidSSL) and Comodo. These are the biggest certificate authorities and they both offer short term test certificates for free. I then tried to trick them into revoking those certificates with a fake private key. Forging a private key To understand this we need to get a bit into the details of RSA keys. In essence a cryptographic key is just a set of numbers. For RSA a public key consists of a modulus (usually named N) and a public exponent (usually called e). You don’t have to understand their mathematical meaning, just keep in mind: They’re nothing more than numbers. An RSA private key is also just numbers, but more of them. If you have heard any introductory RSA descriptions you may know that a private key consists of a private exponent (called d), but in practice it’s a bit more. Private keys usually contain the full public key (N, e), the private exponent (d) and several other values that are redundant, but they are useful to speed up certain things. But just keep in mind that a public key consists of two numbers and a private key is a public key plus some additional numbers. A certificate ultimately is just a public key with some additional information (like the host name that says for which web page it’s valid) signed by a certificate authority. A naive check whether a private key belongs to a certificate could be done by extracting the public key parts of both the certificate and the private key for comparison. However it is quite obvious that this isn’t secure. An attacker could construct a private key that contains the public key of an existing certificate and the private key parts of some other, bogus key. Obviously such a fake key couldn’t be used and would only produce errors, but it would survive such a naive check. I created such fake keys for both domains and uploaded them to Pastebin. If you want to create such fake keys on your own here’s a script. To make my report less suspicious I searched Pastebin for real, compromised private keys belonging to certificates. This again shows how problematic the leakage of private keys is: I easily found seven private keys for Comodo certificates and three for Symantec certificates, plus several more for other certificate authorities, which I also reported. These additional keys allowed me to make my report to Symantec and Comodo less suspicious: I could hide my fake key report within other legitimate reports about a key compromise. Symantec revoked a certificate based on a forged private key Comodo didn’t fall for it. They answered me that there is something wrong with this key. Symantec however answered me that they revoked all certificates – including the one with the fake private key. No harm was done here, because the certificate was only issued for my own test domain. But I could’ve also fake private keys of other peoples' certificates. Very likely Symantec would have revoked them as well, causing downtimes for those sites. I even could’ve easily created a fake key belonging to Symantec’s own certificate. The communication by Symantec with the domain owner was far from ideal. I first got a mail that they were unable to process my order. Then I got another mail about a “cancellation request”. They didn’t explain what really happened and that the revocation happened due to a key uploaded on Pastebin. I then informed Symantec about the invalid key (from my “real” identity), claiming that I just noted there’s something wrong with it. At that point they should’ve been aware that they revoked the certificate in error. Then I contacted the support with my “domain owner” identity and asked why the certificate was revoked. The answer: “I wanted to inform you that your FreeSSL certificate was cancelled as during a log check it was determined that the private key was compromised.” To summarize: Symantec never told the domain owner that the certificate was revoked due to a key leaked on Pastebin. I assume in all the other cases they also didn’t inform their customers. Thus they may have experienced a certificate revocation, but don’t know why. So they can’t learn and can’t improve their processes to make sure this doesn’t happen again. Also, Symantec still insisted to the domain owner that the key was compromised even after I already had informed them that the key was faulty. How to check if a private key belongs to a certificate? In case you wonder how you properly check whether a private key belongs to a certificate you may of course resort to a Google search. And this was fascinating – and scary – to me: I searched Google for “check if private key matches certificate”. I got plenty of instructions. Almost all of them were wrong. The first result is a page from SSLShopper. They recommend to compare the MD5 hash of the modulus. That they use MD5 is not the problem here, the problem is that this is a naive check only comparing parts of the public key. They even provide a form to check this. (That they ask you to put your private key into a form is a different issue on its own, but at least they have a warning about this and recommend to check locally.) Furthermore we get the same wrong instructions from the University of Wisconsin, Comodo (good that their engineers were smart enough not to rely on their own documentation), tbs internet (“SSL expert since 1996”), ShellHacks, IBM and RapidSSL (aka Symantec). A post on Stackexchange is the only result that actually mentions a proper check for RSA keys. Two more Stackexchange posts are not related to RSA, I haven’t checked their solutions in detail. Going to Google results page two among some unrelated links we find more wrong instructions and tools from Symantec (Update 2020: Link offline), SSL247 (“Symantec Specialist Partner Website Security” - they learned from the best) and some private blog. A documentation by Aspera (belonging to IBM) at least mentions that you can check the private key, but in an unrelated section of the document. Also we get more tools that ask you to upload your private key and then not properly check it from SSLChecker.com, the SSL Store (Symantec “Website Security Platinum Partner”), GlobeSSL (“in SSL we trust”) and - well - RapidSSL. Documented Security Vulnerability in OpenSSL So if people google for instructions they’ll almost inevitably end up with non-working instructions or tools. But what about other options? Let’s say we want to automate this and have a tool that verifies whether a certificate matches a private key using OpenSSL. We may end up finding that OpenSSL has a function x509_check_private_key() that can be used to “check the consistency of a private key with the public key in an X509 certificate or certificate request”. Sounds like exactly what we need, right?Well, until you read the full docs and find out that it has a BUGS section: “The check_private_key functions don't check if k itself is indeed a private key or not. It merely compares the public materials (e.g. exponent and modulus of an RSA key) and/or key parameters (e.g. EC params of an EC key) of a key pair.” I think this is a security vulnerability in OpenSSL (discussion with OpenSSL here). And that doesn’t change just because it’s a documented security vulnerability. Notably there are downstream consumers of this function that failed to copy that part of the documentation, see for example the corresponding PHP function (the limitation is however mentioned in a comment by a user). So how do you really check whether a private key matches a certificate? Ultimately there are two reliable ways to check whether a private key belongs to a certificate. One way is to check whether the various values of the private key are consistent and then check whether the public key matches. For example a private key contains values p and q that are the prime factors of the public modulus N. If you multiply them and compare them to N you can be sure that you have a legitimate private key. It’s one of the core properties of RSA that it’s secure based on the assumption that it’s not feasible to calculate p and q from N. You can use OpenSSL to check the consistency of a private key: openssl rsa -in [privatekey] -check For my forged keys it will tell you: RSA key error: n does not equal p q You can then compare the public key, for example by calculating the so-called SPKI SHA256 hash: openssl pkey -in [privatekey] -pubout -outform der | sha256sum openssl x509 -in [certificate] -pubkey |openssl pkey -pubin -pubout -outform der | sha256sum Another way is to sign a message with the private key and then verify it with the public key. You could do it like this: openssl x509 -in [certificate] -noout -pubkey > pubkey.pem dd if=/dev/urandom of=rnd bs=32 count=1 openssl rsautl -sign -pkcs -inkey [privatekey] -in rnd -out sig openssl rsautl -verify -pkcs -pubin -inkey pubkey.pem -in sig -out check cmp rnd check rm rnd check sig pubkey.pem If cmp produces no output then the signature matches. As this is all quite complex due to OpenSSLs arcane command line interface I have put this all together in a script. You can pass a certificate and a private key, both in ASCII/PEM format, and it will do both checks. Summary Symantec did a major blunder by revoking a certificate based on completely forged evidence. There’s hardly any excuse for this and it indicates that they operate a certificate authority without a proper understanding of the cryptographic background. Apart from that the problem of checking whether a private key and certificate match seems to be largely documented wrong. Plenty of erroneous guides and tools may cause others to fall for the same trap. Update: Symantec answered with a blog post.
Posted by Hanno Böck
in Cryptography, English, Linux, Security
at
16:58
| Comments (12)
| Trackback (1)
Defined tags for this entry: ca, certificate, certificateauthority, openssl, privatekey, rsa, ssl, symantec, tls, x509
Friday, May 19. 2017The Problem with OCSP Stapling and Must Staple and why Certificate Revocation is still broken
Update (2020-09-16): While three years old, people still find this blog post when looking for information about Stapling problems. For Apache the situation has improved considerably in the meantime: mod_md, which is part of recent apache releases, comes with a new stapling implementation which you can enable with the setting MDStapling on.
Today the OCSP servers from Let’s Encrypt were offline for a while. This has caused far more trouble than it should have, because in theory we have all the technologies available to handle such an incident. However due to failures in how they are implemented they don’t really work. We have to understand some background. Encrypted connections using the TLS protocol like HTTPS use certificates. These are essentially cryptographic public keys together with a signed statement from a certificate authority that they belong to a certain host name. CRL and OCSP – two technologies that don’t work Certificates can be revoked. That means that for some reason the certificate should no longer be used. A typical scenario is when a certificate owner learns that his servers have been hacked and his private keys stolen. In this case it’s good to avoid that the stolen keys and their corresponding certificates can still be used. Therefore a TLS client like a browser should check that a certificate provided by a server is not revoked. That’s the theory at least. However the history of certificate revocation is a history of two technologies that don’t really work. One method are certificate revocation lists (CRLs). It’s quite simple: A certificate authority provides a list of certificates that are revoked. This has an obvious limitation: These lists can grow. Given that a revocation check needs to happen during a connection it’s obvious that this is non-workable in any realistic scenario. The second method is called OCSP (Online Certificate Status Protocol). Here a client can query a server about the status of a single certificate and will get a signed answer. This avoids the size problem of CRLs, but it still has a number of problems. Given that connections should be fast it’s quite a high cost for a client to make a connection to an OCSP server during each handshake. It’s also concerning for privacy, as it gives the operator of an OCSP server a lot of information. However there’s a more severe problem: What happens if an OCSP server is not available? From a security point of view one could say that a certificate that can’t be OCSP-checked should be considered invalid. However OCSP servers are far too unreliable. So practically all clients implement OCSP in soft fail mode (or not at all). Soft fail means that if the OCSP server is not available the certificate is considered valid. That makes the whole OCSP concept pointless: If an attacker tries to abuse a stolen, revoked certificate he can just block the connection to the OCSP server – and thus a client can’t learn that it’s revoked. Due to this inherent security failure Chrome decided to disable OCSP checking altogether. As a workaround they have something called CRLsets and Mozilla has something similar called OneCRL, which is essentially a big revocation list for important revocations managed by the browser vendor. However this is a weak workaround that doesn’t cover most certificates. OCSP Stapling and Must Staple to the rescue? There are two technologies that could fix this: OCSP Stapling and Must-Staple. OCSP Stapling moves the querying of the OCSP server from the client to the server. The server gets OCSP replies and then sends them within the TLS handshake. This has several advantages: It avoids the latency and privacy implications of OCSP. It also allows surviving short downtimes of OCSP servers, because a TLS server can cache OCSP replies (they’re usually valid for several days). However it still does not solve the security issue: If an attacker has a stolen, revoked certificate it can be used without Stapling. The browser won’t know about it and will query the OCSP server, this request can again be blocked by the attacker and the browser will accept the certificate. Therefore an extension for certificates has been introduced that allows us to require Stapling. It’s usually called OCSP Must-Staple and is defined in RFC 7633 (although the RFC doesn’t mention the name Must-Staple, which can cause some confusion). If a browser sees a certificate with this extension that is used without OCSP Stapling it shouldn’t accept it. So we should be fine. With OCSP Stapling we can avoid the latency and privacy issues of OCSP and we can avoid failing when OCSP servers have short downtimes. With OCSP Must-Staple we fix the security problems. No more soft fail. All good, right? The OCSP Stapling implementations of Apache and Nginx are broken Well, here come the implementations. While a lot of protocols use TLS, the most common use case is the web and HTTPS. According to Netcraft statistics by far the biggest share of active sites on the Internet run on Apache (about 46%), followed by Nginx (about 20 %). It’s reasonable to say that if these technologies should provide a solution for revocation they should be usable with the major products in that area. On the server side this is only OCSP Stapling, as OCSP Must Staple only needs to be checked by the client. What would you expect from a working OCSP Stapling implementation? It should try to avoid a situation where it’s unable to send out a valid OCSP response. Thus roughly what it should do is to fetch a valid OCSP response as soon as possible and cache it until it gets a new one or it expires. It should furthermore try to fetch a new OCSP response long before the old one expires (ideally several days). And it should never throw away a valid response unless it has a newer one. Google developer Ryan Sleevi wrote a detailed description of what a proper OCSP Stapling implementation could look like. Apache does none of this. If Apache tries to renew the OCSP response and gets an error from the OCSP server – e. g. because it’s currently malfunctioning – it will throw away the existing, still valid OCSP response and replace it with the error. It will then send out stapled OCSP errors. Which makes zero sense. Firefox will show an error if it sees this. This has been reported in 2014 and is still unfixed. Now there’s an option in Apache to avoid this behavior: SSLStaplingReturnResponderErrors. It’s defaulting to on. If you switch it off you won’t get sane behavior (that is – use the still valid, cached response), instead Apache will disable Stapling for the time it gets errors from the OCSP server. That’s better than sending out errors, but it obviously makes using Must Staple a no go. It gets even crazier. I have set this option, but this morning I still got complaints that Firefox users were seeing errors. That’s because in this case the OCSP server wasn’t sending out errors, it was completely unavailable. For that situation Apache has a feature that will fake a tryLater error to send out to the client. If you’re wondering how that makes any sense: It doesn’t. The “tryLater” error of OCSP isn’t useful at all in TLS, because you can’t try later during a handshake which only lasts seconds. This is controlled by another option: SSLStaplingFakeTryLater. However if we read the documentation it says “Only effective if SSLStaplingReturnResponderErrors is also enabled.” So if we disabled SSLStapingReturnResponderErrors this shouldn’t matter, right? Well: The documentation is wrong. There are more problems: Apache doesn’t get the OCSP responses on startup, it only fetches them during the handshake. This causes extra latency on the first connection and increases the risk of hitting a situation where you don’t have a valid OCSP response. Also cached OCSP responses don’t survive server restarts, they’re kept in an in-memory cache. There’s currently no way to configure Apache to handle OCSP stapling in a reasonable way. Here’s the configuration I use, which will at least make sure that it won’t send out errors and cache the responses a bit longer than it does by default: SSLStaplingCache shmcb:/var/tmp/ocsp-stapling-cache/cache(128000000) I’m less familiar with Nginx, but from what I hear it isn’t much better either. According to this blogpost it doesn’t fetch OCSP responses on startup and will send out the first TLS connections without stapling even if it’s enabled. Here’s a blog post that recommends to work around this by connecting to all configured hosts after the server has started. To summarize: This is all a big mess. Both Apache and Nginx have OCSP Stapling implementations that are essentially broken. As long as you’re using either of those then enabling Must-Staple is a reliable way to shoot yourself in the foot and get into trouble. Don’t enable it if you plan to use Apache or Nginx. Certificate revocation is broken. It has been broken since the invention of SSL and it’s still broken. OCSP Stapling and OCSP Must-Staple could fix it in theory. But that would require working and stable implementations in the most widely used server products.
Posted by Hanno Böck
in Cryptography, English, Linux, Security
at
23:25
| Comments (5)
| Trackback (1)
Defined tags for this entry: apache, certificates, cryptography, encryption, https, letsencrypt, nginx, ocsp, ocspstapling, revocation, ssl, tls
Monday, April 4. 2016Pwncloud – bad crypto in the Owncloud encryption module
The Owncloud web application has an encryption module. I first became aware of it when a press release was published advertising this encryption module containing this:
“Imagine you are an IT organization using industry standard AES 256 encryption keys. Let’s say that a vulnerability is found in the algorithm, and you now need to improve your overall security by switching over to RSA-2048, a completely different algorithm and key set. Now, with ownCloud’s modular encryption approach, you can swap out the existing AES 256 encryption with the new RSA algorithm, giving you added security while still enabling seamless access to enterprise-class file sharing and collaboration for all of your end-users.” To anyone knowing anything about crypto this sounds quite weird. AES and RSA are very different algorithms – AES is a symmetric algorithm and RSA is a public key algorithm - and it makes no sense to replace one by the other. Also RSA is much older than AES. This press release has since been removed from the Owncloud webpage, but its content can still be found in this Reuters news article. This and some conversations with Owncloud developers caused me to have a look at this encryption module. First it is important to understand what this encryption module is actually supposed to do and understand the threat scenario. The encryption provides no security against a malicious server operator, because the encryption happens on the server. The only scenario where this encryption helps is if one has a trusted server that is using an untrusted storage space. When one uploads a file with the encryption module enabled it ends up under the same filename in the user's directory on the file storage. Now here's a first, quite obvious problem: The filename itself is not protected, so an attacker that is assumed to be able to see the storage space can already learn something about the supposedly encrypted data. The content of the file starts with this: BEGIN:oc_encryption_module:OC_DEFAULT_MODULE:cipher:AES-256-CFB:HEND---- It is then padded with further dashes until position 0x2000 and then the encrypted contend follows Base64-encoded in blocks of 8192 bytes. The header tells us what encryption algorithm and mode is used: AES-256 in CFB-mode. CFB stands for Cipher Feedback. Authenticated and unauthenticated encryption modes In order to proceed we need some basic understanding of encryption modes. AES is a block cipher with a block size of 128 bit. That means we cannot just encrypt arbitrary input with it, the algorithm itself only encrypts blocks of 128 bit (or 16 byte) at a time. The naive way to encrypt more data is to split it into 16 byte blocks and encrypt every block. This is called Electronic Codebook mode or ECB and it should never be used, because it is completely insecure. Common modes for encryption are Cipherblock Chaining (CBC) and Counter mode (CTR). These modes are unauthenticated and have a property that's called malleability. This means an attacker that is able to manipulate encrypted data is able to manipulate it in a way that may cause a certain defined behavior in the output. Often this simply means an attacker can flip bits in the ciphertext and the same bits will be flipped in the decrypted data. To counter this these modes are usually combined with some authentication mechanism, a common one is called HMAC. However experience has shown that this combining of encryption and authentication can go wrong. Many vulnerabilities in both TLS and SSH were due to bad combinations of these two mechanism. Therefore modern protocols usually use dedicated authenticated encryption modes (AEADs), popular ones include Galois/Counter-Mode (GCM), Poly1305 and OCB. Cipher Feedback (CFB) mode is a self-correcting mode. When an error happens, which can be simple data transmission error or a hard disk failure, two blocks later the decryption will be correct again. This also allows decrypting parts of an encrypted data stream. But the crucial thing for our attack is that CFB is not authenticated and malleable. And Owncloud didn't use any authentication mechanism at all. Therefore the data is encrypted and an attacker cannot see the content of a file (however he learns some metadata: the size and the filename), but an Owncloud user cannot be sure that the downloaded data is really the data that was uploaded in the first place. The malleability of CFB mode works like this: An attacker can flip arbitrary bits in the ciphertext, the same bit will be flipped in the decrypted data. However if he flips a bit in any block then the following block will contain unpredictable garbage. Backdooring an EXE file How does that matter in practice? Let's assume we have a group of people that share a software package over Owncloud. One user uploads a Windows EXE installer and the others download it from there and install it. Let's further assume that the attacker doesn't know the content of the EXE file (this is a generous assumption, in many cases he will know, as he knows the filename). EXE files start with a so-called MZ-header, which is the old DOS EXE header that gets usually ignored. At a certain offset (0x3C), which is at the end of the fourth 16 byte block, there is an address of the PE header, which on Windows systems is the real EXE header. After the MZ header even on modern executables there is still a small DOS program. This starts with the fifth 16 byte block. This DOS program usually only shows the message “Th is program canno t be run in DOS mode”. And this DOS stub program is almost always the exactly the same. Therefore our attacker can do the following: First flip any non-relevant bit in the third 16 byte block. This will cause the fourth block to contain garbage. The fourth block contains the offset of the PE header. As this is now garbled Windows will no longer consider this executable to be a Windows application and will therefore execute the DOS stub. The attacker can then XOR 16 bytes of his own code with the first 16 bytes of the standard DOS stub code. He then XORs the result with the fifth block of the EXE file where he expects the DOS stub to be. Voila: The resulting decrypted EXE file will contain 16 bytes of code controlled by the attacker. I created a proof of concept of this attack. This isn't enough to launch a real attack, because an attacker only has 16 bytes of DOS assembler code, which is very little. For a real attack an attacker would have to identify further pieces of the executable that are predictable and jump through the code segments. The first fix I reported this to Owncloud via Hacker One in January. The first fix they proposed was a change where they used Counter-Mode (CTR) in combination with HMAC. They still encrypt the file in blocks of 8192 bytes size. While this is certainly less problematic than the original construction it still had an obvious problem: All the 8192 bytes sized file blocks where encrypted the same way. Therefore an attacker can swap or remove chunks of a file. The encryption is still malleable. The second fix then included a counter of the file and also avoided attacks where an attacker can go back to an earlier version of a file. This solution is shipped in Owncloud 9.0, which has recently been released. Is this new construction secure? I honestly don't know. It is secure enough that I didn't find another obvious flaw in it, but that doesn't mean a whole lot. You may wonder at this point why they didn't switch to an authenticated encryption mode like GCM. The reason for that is that PHP doesn't support any authenticated encryption modes. There is a proposal and most likely support for authenticated encryption will land in PHP 7.1. However given that using outdated PHP versions is a very widespread practice it will probably take another decade till anyone can use that in mainstream web applications. Don't invent your own crypto protocols The practical relevance of this vulnerability is probably limited, because the scenario that it protects from is relatively obscure. But I think there is a lesson to learn here. When people without a strong cryptographic background create ad-hoc designs of cryptographic protocols it will almost always go wrong. It is widely known that designing your own crypto algorithms is a bad idea and that you should use standardized and well tested algorithms like AES. But using secure algorithms doesn't automatically create a secure protocol. One has to know the interactions and limitations of crypto primitives and this is far from trivial. There is a worrying trend – especially since the Snowden revelations – that new crypto products that never saw any professional review get developed and advertised in masses. A lot of these products are probably extremely insecure and shouldn't be trusted at all. If you do crypto you should either do it right (which may mean paying someone to review your design or to create it in the first place) or you better don't do it at all. People trust your crypto, and if that trust isn't justified you shouldn't ship a product that creates the impression it contains secure cryptography. There's another thing that bothers me about this. Although this seems to be a pretty standard use case of crypto – you have a symmetric key and you want to encrypt some data – there is no straightforward and widely available standard solution for it. Using authenticated encryption solves a number of issues, but not all of them (this talk by Adam Langley covers some interesting issues and caveats with authenticated encryption). The proof of concept can be found on Github. I presented this vulnerability in a talk at the Easterhegg conference, a video recording is available. Update (2020): Kevin Niehage had a much more detailed look at the encryption module of Owncloud and its fork Nextcloud. Among other things he noted that a downgrade attack allows re-enabling the attack I described. He found several other design flaws and bad design decisions and has written a paper about it. Friday, December 11. 2015What got us into the SHA1 deprecation mess?
Important notice: After I published this text Adam Langley pointed out that a major assumption is wrong: Android 2.2 actually has no problems with SHA256-signed certificates. I checked this myself and in an emulated Android 2.2 instance I was able to connect to a site with a SHA256-signed certificate. I apologize for that error, I trusted the Cloudflare blog post on that. This whole text was written with that assumption in mind, so it's hard to change without rewriting it from scratch. I have marked the parts that are likely to be questioned. Most of it is still true and Android 2 has a problematic TLS stack (no SNI), but the specific claim regarding SHA256-certificates seems wrong.
This week both Cloudflare and Facebook announced that they want to delay the deprecation of certificates signed with the SHA1 algorithm. This spurred some hot debates whether or not this is a good idea – with two seemingly good causes: On the one side people want to improve security, on the other side access to webpages should remain possible for users of old devices, many of them living in poor countries. I want to give some background on the issue and ask why that unfortunate situation happened in the first place, because I think it highlights some of the most important challenges in the TLS space and more generally in IT security. SHA1 broken since 2005 The SHA1 algorithm is a cryptographic hash algorithm and it has been know for quite some time that its security isn't great. In 2005 the Chinese researcher Wang Xiaoyun published an attack that would allow to create a collision for SHA1. The attack wasn't practically tested, because it is quite expensive to do so, but it was clear that a financially powerful adversary would be able to perform such an attack. A year before the even older hash function MD5 was broken practically, in 2008 this led to a practical attack against the issuance of TLS certificates. In the past years browsers pushed for the deprecation of SHA1 certificates and it was agreed that starting January 2016 no more certificates signed with SHA1 must be issued, instead the stronger algorithm SHA256 should be used. Many felt this was already far too late, given that it's been ten years since we knew that SHA1 is broken. A few weeks before the SHA1 deadline Cloudflare and Facebook now question this deprecation plan. They have some strong arguments. According to Cloudflare's numbers there is still a significant number of users that use browsers without support for SHA256-certificates. And those users are primarily in relatively poor, repressive or war-ridden countries. The top three on the list are China, Cameroon and Yemen. Their argument, which is hard to argue with, is that cutting of SHA1 support will primarily affect the poorest users. Cloudflare and Facebook propose a new mechanism to get legacy validated certificates. These certificates should only be issued to site operators that will use a technology to separate users based on their TLS handshake and only show the SHA1 certificate to those that use an older browser. Facebook already published the code to do that, Cloudflare also announced that they will release the code of their implementation. Right now it's still possible to get SHA1 certificates, therefore those companies could just register them now and use them for three years to come. Asking for this legacy validation process indicates that Cloudflare and Facebook don't see this as a short-term workaround, instead they seem to expect that this will be a solution they use for years to come, without any decided end date. It's a tough question whether or not this is a good idea. But I want to ask a different question: Why do we have this problem in the first place, why is it hard to fix and what can we do to prevent similar things from happening in the future? One thing is remarkable about this problem: It's a software problem. In theory software can be patched and the solution to a software problem is to update the software. So why can't we just provide updates and get rid of these legacy problems? Windows XP and Android Froyo According to Cloudflare there are two main reason why so many users can't use sites with SHA256 certificates: Windows XP and old versions of Android (SHA256 support was added in Android 2.3, so this affects mostly Android 2.2 aka Froyo). We all know that Windows XP shouldn't be used any more, that its support has ended in 2014. But that clearly clashes with realities. People continue using old systems and Windows XP is still alive in many countries, especially in China. But I'm inclined to say that Windows XP is probably the smaller problem here. With Service Pack 3 Windows XP introduced support for SHA256 certificates. By using an alternative browser (Firefox is still supported on Windows XP if you install SP3) it is even possible to have a relatively safe browsing experience. I'm not saying that I recommend it, but given the circumstances advising people how to update their machines and to install an alternative browser can party provide a way to reduce the reliance on broken algorithms. The Updatability Gap But the problem with Android is much, much worse, and I think this brings us to probably the biggest problem in IT security we have today. For years one of the most important messages to users in IT security was: Keep your software up to date. But at the same time the industry has created new software ecosystems where very often that just isn't an option. In the Android case Google says that it's the responsibility of device vendors and carriers to deliver security updates. The dismal reality is that in most cases they just don't do that. But even if device vendors are willing to provide updates it usually only happens for a very short time frame. Google only supports the latest two Android major versions. For them Android 2.2 is ancient history, but for a significant portion of users it is still the operating system they use. What we have here is a huge gap between the time frame devices get security updates and the time frame users use these devices. And pretty much everything tells us that the vendors in the Internet of Things ignore these problems even more and the updatability gap will become larger. Many became accustomed to the idea that phones get only used for a year, but it's hard to imagine how that's going to work for a fridge. What's worse: Whether you look at phones or other devices, they often actively try to prevent users from replacing the software on their own. This is a hard problem to tackle, but it's probably the biggest problem IT security is facing in the upcoming years. We need to get a working concept for updates – a concept that matches the real world use of devices. Substandard TLS implementations But there's another part of the SHA1 deprecation story. As I wrote above since 2005 it was clear that SHA1 needs to go away. That was three years before Android was even published. But in 2010 Android still wasn't capable of supporting SHA256 certificates. Google has to take a large part of the blame here. While these days they are at the forefront of deploying high quality and up to date TLS stacks, they shipped a substandard and outdated TLS implementation in Android 2. (Another problem is that all Android 2 versions don't support Server Name Indication, a technology that allows to use different certificates for different hosts on one IP address.) This is not the first such problem we are facing. With the POODLE vulnerability it became clear that the old SSL version 3 is broken beyond repair and it's impossible to use it safely. The only option was to deprecate it. However doing so was painful, because a lot of devices out there didn't support better protocols. The successor protocol TLS 1.0 (SSL/TLS versions are confusing, I know) was released in 1999. But the problem wasn't that people were using devices older than 1999. The problem was that many vendors shipped devices and software that only supported SSLv3 in recent years. One example was Windows Phone 7. In 2011 this was the operating system on Microsoft's and Nokia's flagship product, the Lumia 800. Its mail client is unable to connect to servers not supporting SSLv3. It is just inexcusable that in 2011 Microsoft shipped a product which only supported a protocol that was deprecated 12 years earlier. It's even more inexcusable that they refused to fix it later, because it only came to light when Windows Phone 7 was already out of support. The takeaway from this is that sloppiness from the past can bite you many years later. And this is what we're seeing with Android 2.2 now. But you might think given these experiences this has stopped today. It hasn't. The largest deployer of substandard TLS implementations these days is Apple. Up until recently (before El Capitan) Safari on OS X didn't support any authenticated encryption cipher suites with AES-GCM and relied purely on the CBC block mode. The CBC cipher suites are a hot candidate for the next deprecation plan, because 2013 the Lucky 13 attack has shown that they are really hard to implement safely. The situation for applications other than the browser (Mail etc.) is even worse on Apple devices. They only support the long deprecated TLS 1.0 protocol – and that's still the case on their latest systems. There is widespread agreement in the TLS and cryptography community that the only really safe way to use TLS these days is TLS 1.2 with a cipher suite using forward secrecy and authenticated encryption (AES-GCM is the only standardized option for that right now, however ChaCha20/Poly1304 will come soon). Conclusions For the specific case of the SHA1 deprecation I would propose the following: Cloudflare and Facebook should go ahead with their handshake workaround for the next years, as long as their current certificates are valid. But this time should be used to find solutions. Reach out to those users visiting your sites and try to understand what could be done to fix the situation. For the Windows XP users this is relatively easy – help them updating their machines and preferably install another browser, most likely that'd be Firefox. For Android there is probably no easy solution, but we have some of the largest Internet companies involved here. Please seriously ask the question: Is it possible to retrofit Android 2.2 with a reasonable TLS stack? What ways are there to get that onto the devices? Is it possible to install a browser app with its own TLS stack on at least some of those devices? This probably doesn't work in most cases, because on many cheap phones there just isn't enough space to install large apps. In the long term I hope that the tech community will start tackling the updatability problem. In the TLS space I think we need to make sure that no more substandard TLS deployments get shipped today. Point out the vendors that do so and pressure them to stop. It wasn't acceptable in 2010 to ship TLS with long-known problems and it isn't acceptable today. Image source: Wikimedia Commons
Posted by Hanno Böck
in Cryptography, English, Security
at
15:24
| Comment (1)
| Trackbacks (0)
Defined tags for this entry: android, certificate, cloudflare, cryptography, facebook, hash, https, security, sha1, sha256, ssl, tls, updates, windowsxp
Monday, November 30. 2015A little POODLE left in GnuTLS (old versions)
tl;dr Older GnuTLS versions (2.x) fail to check the first byte of the padding in CBC modes. Various stable Linux distributions, including Ubuntu LTS and Debian wheezy (oldstable) use this version. Current GnuTLS versions are not affected.
A few days ago an email on the ssllabs mailing list catched my attention. A Canonical developer had observed that the SSL Labs test would report the GnuTLS version used in Ubuntu 14.04 (the current long time support version) as vulnerable to the POODLE TLS vulnerability, while other tests for the same vulnerability showed no such issue. A little background: The original POODLE vulnerability is a weakness of the old SSLv3 protocol that's now officially deprecated. POODLE is based on the fact that SSLv3 does not specify the padding of the CBC modes and the padding bytes can contain arbitrary bytes. A while after POODLE Adam Langley reported that there is a variant of POODLE in TLS, however while the original POODLE is a protocol issue the POODLE TLS vulnerability is an implementation issue. TLS specifies the values of the padding bytes, but some implementations don't check them. Recently Yngve Pettersen reported that there are different variants of this POODLE TLS vulnerability: Some implementations only check parts of the padding. This is the reason why sometimes different tests lead to different results. A test that only changes one byte of the padding will lead to different results than one that changes all padding bytes. Yngve Pettersen uncovered POODLE variants in devices from Cisco (Cavium chip) and Citrix. I looked at the Ubuntu issue and found that this was exactly such a case of an incomplete padding check: The first byte wasn't checked. I believe this might explain some of the vulnerable hosts Yngve Pettersen found. This is the code: for (i = 2; i <= pad; i++) The padding in TLS is defined that the rightmost byte of the last block contains the length of the padding. This value is also used in all padding bytes. However the length field itself is not part of the padding. Therefore if we have e. g. a padding length of three this would result in four bytes with the value 3. The above code misses one byte. i goes from 2 (setting block length minus 2) to pad (block length minus pad length), which sets pad length minus one bytes. To correct it we need to change the loop to end with pad+1. The code is completely reworked in current GnuTLS versions, therefore they are not affected. Upstream has officially announced the end of life for GnuTLS 2, but some stable Linux distributions still use it. The story doesn't end here: After I found this bug I talked about it with Juraj Somorovsky. He mentioned that he already read about this before: In the paper of the Lucky Thirteen attack. That was published in 2013 by Nadhem AlFardan and Kenny Paterson. Here's what the Lucky Thirteen paper has to say about this issue on page 13: for (i = 2; i < pad; i++) It is not hard to see that this loop should also cover the edge case i=pad in order to carry out a full padding check. This means that one byte of what should be padding actually has a free format. If you look closely you will see that this code is actually different from the one I quoted above. The reason is that the GnuTLS version in question already contained a fix that was applied in response to the Lucky Thirteen paper. However what the Lucky Thirteen paper missed is that the original check was off by two bytes, not just one byte. Therefore it only got an incomplete fix reducing the attack surface from two bytes to one. In a later commit this whole code was reworked in response to the Lucky Thirteen attack and there the problem got fixed for good. However that change never made it into version 2 of GnuTLS. Red Hat / CentOS packages contain a backport patch of those changes, therefore they are not affected. You might wonder what the impact of this bug is. I'm not totally familiar with the details of all the possible attacks, but the POODLE attack gets increasingly harder if fewer bytes of the padding can be freely set. It most likely is impossible if there is only one byte. The Lucky Thirteen paper says: "This would enable, for example, a variant of the short MAC attack of [28] even if variable length padding was not supported.". People that know more about crypto than I do should be left with the judgement whether this might be practically exploitabe. Fixing this bug is a simple one-line patch I have attached here. This will silence all POODLE checks, however this doesn't apply all the changes that were made in response to the Lucky Thirteen attack. I'm not sure if the code is practically vulnerable, but Lucky Thirteen is a tricky issue, recently a variant of that attack was shown against Amazon's s2n library. The missing padding check for the first byte got CVE-2015-8313 assigned. Currently I'm aware of Ubuntu LTS (now fixed) and Debian oldstable (Wheezy) being affected.
Posted by Hanno Böck
in Code, Cryptography, English, Linux, Security
at
20:32
| Comments (0)
| Trackbacks (0)
Defined tags for this entry: cbc, gnutls, luckythirteen, padding, poodle, security, ssl, tls, vulnerability
Monday, November 23. 2015Superfish 2.0: Dangerous Certificate on Dell Laptops breaks encrypted HTTPS Connections
tl;dr Dell laptops come preinstalled with a root certificate and a corresponding private key. That completely compromises the security of encrypted HTTPS connections. I've provided an online check, affected users should delete the certificate.
It seems that Dell hasn't learned anything from the Superfish-scandal earlier this year: Laptops from the company come with a preinstalled root certificate that will be accepted by browsers. The private key is also installed on the system and has been published now. Therefore attackers can use Man in the Middle attacks against Dell users to show them manipulated HTTPS webpages or read their encrypted data. The certificate, which is installed in the system's certificate store under the name "eDellRoot", gets installed by a software called Dell Foundation Services. This software is still available on Dell's webpage. According to the somewhat unclear description from Dell it is used to provide "foundational services facilitating customer serviceability, messaging and support functions". The private key of this certificate is marked as non-exportable in the Windows certificate store. However this provides no real protection, there are Tools to export such non-exportable certificate keys. A user of the plattform Reddit has posted the Key there. For users of the affected Laptops this is a severe security risk. Every attacker can use this root certificate to create valid certificates for arbitrary web pages. Even HTTP Public Key Pinning (HPKP) does not protect against such attacks, because browser vendors allow locally installed certificates to override the key pinning protection. This is a compromise in the implementation that allows the operation of so-called TLS interception proxies. I was made aware of this issue a while ago by Kristof Mattei. We asked Dell for a statement three weeks ago and didn't get any answer. It is currently unclear which purpose this certificate served. However it seems unliklely that it was placed there deliberately for surveillance purposes. In that case Dell wouldn't have installed the private key on the system. Affected are only users that use browsers or other applications that use the system's certificate store. Among the common Windows browsers this affects the Internet Explorer, Edge and Chrome. Not affected are Firefox-users, Mozilla's browser has its own certificate store. Users of Dell laptops can check if they are affected with an online check tool. Affected users should immediately remove the certificate in the Windows certificate manager. The certificate manager can be started by clicking "Start" and typing in "certmgr.msc". The "eDellRoot" certificate can be found under "Trusted Root Certificate Authorities". You also need to remove the file Dell.Foundation.Agent.Plugins.eDell.dll, Dell has now posted an instruction and a removal tool. This incident is almost identical with the Superfish-incident. Earlier this year it became public that Lenovo had preinstalled a software called Superfish on its Laptops. Superfish intercepts HTTPS-connections to inject ads. It used a root certificate for that and the corresponding private key was part of the software. After that incident several other programs with the same vulnerability were identified, they all used a software module called Komodia. Similar vulnerabilities were found in other software products, for example in Privdog and in the ad blocker Adguard. This article is mostly a translation of a German article I wrote for Golem.de. Image source and license: Wistula / Wikimedia Commons, Creative Commons by 3.0 Update (2015-11-24): Second Dell root certificate DSDTestProvider I just found out that there is a second root certificate installed with some Dell software that causes exactly the same issue. It is named DSDTestProvider and comes with a software called Dell System Detect. Unlike the Dell Foundations Services this one does not need a Dell computer to be installed, therefore it was trivial to extract the certificate and the private key. My online test now checks both certificates. This new certificate is not covered by Dell's removal instructions yet. Dell has issued an official statement on their blog and in the comment section a user mentioned this DSDTestProvider certificate. After googling what DSD might be I quickly found it. There have been concerns about the security of Dell System Detect before, Malwarebytes has an article about it from April mentioning that it was vulnerable to a remote code execution vulnerability. Update (2015-11-26): Service tag information disclosure Another unrelated issue on Dell PCs was discovered in a tool called Dell Foundation Services. It allows webpages to read an unique service tag. There's also an online check.
Posted by Hanno Böck
in Cryptography, English, Security
at
17:39
| Comments (7)
| Trackbacks (0)
Defined tags for this entry: browser, certificate, cryptography, dell, edellroot, encryption, https, maninthemiddle, security, ssl, superfish, tls, vulnerability
Thursday, August 13. 2015More TLS Man-in-the-Middle failures - Adguard, Privdog again and ProtocolFilters.dll
In February the discovery of a software called Superfish caused widespread attention. Superfish caused a severe security vulnerability by intercepting HTTPS connections with a Man-in-the-Middle-certificate. The certificate and the corresponding private key was shared amongst all installations.
The use of Man-in-the-Middle-proxies for traffic interception is a widespread method, an application installs a root certificate into the browser and later intercepts connections by creating signed certificates for webpages on the fly. It quickly became clear that Superfish was only the tip of the iceberg. The underlying software module Komodia was used in a whole range of applications all suffering from the same bug. Later another software named Privdog was found that also intercepted HTTPS traffic and I published a blog post explaining that it was broken in a different way: It completely failed to do any certificate verification on its connections. In a later blogpost I analyzed several Antivirus applications that also intercept HTTPS traffic. They were not as broken as Superfish or Privdog, but all of them decreased the security of the TLS encryption in one way or another. The most severe issue was that Kaspersky was at that point still vulnerable to the FREAK bug, more than a month after it was discovered. In a comment to that blogpost I was asked about a software called Adguard. I have to apologize that it took me so long to write this up. Different certificate, same key The first thing I did was to install Adguard two times in different VMs and look at the root certificate that got installed into the browser. The fingerprint of the certificates was different. However a closer look revealed something interesting: The RSA modulus was the same. It turned out that Adguard created a new root certificate with a changing serial number for every installation, but it didn't generate a new key. Therefore it is vulnerable to the same attacks as Superfish. I reported this issue to Adguard. Adguard has fixed this issue, however they still intercept HTTPS traffic. I learned that Adguard did not always use the same key, instead it chose one out of ten different keys based on the CPU. All ten keys could easily be extracted from a file called ProtocolFilters.dll that was shipped with Adguard. Older versions of Adguard only used one key shared amongst all installations. There also was a very outdated copy of the nss library. It suffers from various vulnerabilities, however it seems they are not exploitable. The library is not used for TLS connections, its only job is to install certificates into the Firefox root store. Meet Privdog again The outdated nss version gave me a hint, because I had seen this before: In Privdog. I had spend some time trying to find out if Privdog would be vulnerable to known nss issues (which had the positive side effect that Filippo created proof of concept code for the BERserk vulnerability). What I didn't notice back then was the shared key issue. Privdog also used the same key amongst different installations. So it turns out Privdog was completely broken in two different ways: By sharing the private key amongst installations and by not verifying certificates. The latest version of Privdog no longer intercepts HTTPS traffic, it works as a browser plugin now. I don't know whether this vulnerability was still present after the initial fix caused by my original blog post. Now what is this ProtocolFilters.dll? It is a commercial software module that is supposed to be used along with a product called Netfilter SDK. I wondered where else this would be found and if we would have another widely used software module like Komodia. ProtocolFilters.dll is mentioned a lot in the web, mostly in the context of Potentially Unwanted Applications, also called Crapware. That means software that is either preinstalled or that gets bundled with installers from other software and is often installed without users consent or by tricking the user into clicking some "ok" button without knowing that he or she agrees to install another software. Unfortunately I was unable to get my hands on any other software using it. Lots of "Potentially Unwanted Applications" use ProtocolFilters.dll Software names that I found that supposedly include ProtocolFilters.dll: Coupoon, CashReminder, SavingsDownloader, Scorpion Saver, SavingsbullFilter, BRApp, NCupons, Nurjax, Couponarific, delshark, rrsavings, triosir, screentk. If anyone has any of them or any other piece of software bundling ProtocolFilters.dll I'd be interested in receiving a copy. I'm publishing all Adguard keys and the Privdog key together with example certificates here. I also created a trivial script that can be used to extract keys from ProtocolFilters.dll (or other binary files that include TLS private keys in their binary form). It looks for anything that could be a private key by its initial bytes and then calls OpenSSL to try to decode it. If OpenSSL succeeds it will dump the key. Finally an announcement for visitors of the Chaos Communication Camp: I will give a talk about TLS interception issues and the whole story of Superfish, Privdog and friends on Sunday. Update: Due to the storm the talk was delayed. It will happen on Monday at 12:30 in Track South.
Posted by Hanno Böck
in Cryptography, English, Security
at
00:44
| Comments (4)
| Trackback (1)
Defined tags for this entry: adguard, https, komodia, maninthemiddle, netfiltersdk, privdog, protocolfilters, security, superfish, tls, vulnerability
Sunday, May 17. 2015About the supposed factoring of a 4096 bit RSA key
tl;dr News about a broken 4096 bit RSA key are not true. It is just a faulty copy of a valid key.
Earlier today a blog post claiming the factoring of a 4096 bit RSA key was published and quickly made it to the top of Hacker News. The key in question was the PGP key of a well-known Linux kernel developer. I already commented on Hacker News why this is most likely wrong, but I thought I'd write up some more details. To understand what is going on I have to explain some background both on RSA and on PGP keyservers. This by itself is pretty interesting. RSA public keys consist of two values called N and e. The N value, called the modulus, is the interesting one here. It is the product of two very large prime numbers. The security of RSA relies on the fact that these two numbers are secret. If an attacker would be able to gain knowledge of these numbers he could use them to calculate the private key. That's the reason why RSA depends on the hardness of the factoring problem. If someone can factor N he can break RSA. For all we know today factoring is hard enough to make RSA secure (at least as long as there are no large quantum computers). Now imagine you have two RSA keys, but they have been generated with bad random numbers. They are different, but one of their primes is the same. That means we have N1=p*q1 and N2=p*q2. In this case RSA is no longer secure, because calculating the greatest common divisor (GCD) of two large numbers can be done very fast with the euclidean algorithm, therefore one can calculate the shared prime value. It is not only possible to break RSA keys if you have two keys with one shared factors, it is also possible to take a large set of keys and find shared factors between them. In 2012 Arjen Lenstra and his team published a paper using this attack on large scale key sets and at the same time Nadia Heninger and a team at the University of Michigan independently also performed this attack. This uncovered a lot of vulnerable keys on embedded devices, but these were mostly SSH and TLS keys. Lenstra's team however also found two vulnerable PGP keys. For more background you can watch this 29C3 talk by Nadia Heninger, Dan Bernstein and Tanja Lange. PGP keyservers have been around since quite some time and they have a property that makes them especially interesting for this kind of research: They usually never delete anything. You can add a key to a keyserver, but you cannot remove it, you can only mark it as invalid by revoking it. Therefore using the data from the keyservers gives you a large set of cryptographic keys. Okay, so back to the news about the supposedly broken 4096 bit key: There is a service called Phuctor where you can upload a key and it'll check it against a set of known vulnerable moduli. This service identified the supposedly vulnerable key. The key in question has the key id e99ef4b451221121 and belongs to the master key bda06085493bace4. Here is the vulnerable modulus: c844a98e3372d67f 562bd881da8ea66c a71df16deab1541c e7d68f2243a37665 c3f07d3dd6e651cc d17a822db5794c54 ef31305699a6c77c 043ac87cafc022a3 0a2a717a4aa6b026 b0c1c818cfc16adb aae33c47b0803152 f7e424b784df2861 6d828561a41bdd66 bd220cb46cd288ce 65ccaf9682b20c62 5a84ef28c63e38e9 630daa872270fa15 80cb170bfc492b80 6c017661dab0e0c9 0a12f68a98a98271 82913ff626efddfb f8ae8f1d40da8d13 a90138686884bad1 9db776bb4812f7e3 b288b47114e486fa 2de43011e1d5d7ca 8daf474cb210ce96 2aafee552f192ca0 32ba2b51cfe18322 6eb21ced3b4b3c09 362b61f152d7c7e6 51e12651e915fc9f 67f39338d6d21f55 fb4e79f0b2be4d49 00d442d567bacf7b 6defcd5818b050a4 0db6eab9ad76a7f3 49196dcc5d15cc33 69e1181e03d3b24d a9cf120aa7403f40 0e7e4eca532eac24 49ea7fecc41979d0 35a8e4accea38e1b 9a33d733bea2f430 362bd36f68440ccc 4dc3a7f07b7a7c8f cdd02231f69ce357 4568f303d6eb2916 874d09f2d69e15e6 33c80b8ff4e9baa5 6ed3ace0f65afb43 60c372a6fd0d5629 fdb6e3d832ad3d33 d610b243ea22fe66 f21941071a83b252 201705ebc8e8f2a5 cc01112ac8e43428 50a637bb03e511b2 06599b9d4e8e1ebc eb1e820d569e31c5 0d9fccb16c41315f 652615a02603c69f e9ba03e78c64fecc 034aa783adea213b In fact this modulus is easily factorable, because it can be divided by 3. However if you look at the master key bda06085493bace4 you'll find another subkey with this modulus: c844a98e3372d67f 562bd881da8ea66c a71df16deab1541c e7d68f2243a37665 c3f07d3dd6e651cc d17a822db5794c54 ef31305699a6c77c 043ac87cafc022a3 0a2a717a4aa6b026 b0c1c818cfc16adb aae33c47b0803152 f7e424b784df2861 6d828561a41bdd66 bd220cb46cd288ce 65ccaf9682b20c62 5a84ef28c63e38e9 630daa872270fa15 80cb170bfc492b80 6c017661dab0e0c9 0a12f68a98a98271 82c37b8cca2eb4ac 1e889d1027bc1ed6 664f3877cd7052c6 db5567a3365cf7e2 c688b47114e486fa 2de43011e1d5d7ca 8daf474cb210ce96 2aafee552f192ca0 32ba2b51cfe18322 6eb21ced3b4b3c09 362b61f152d7c7e6 51e12651e915fc9f 67f39338d6d21f55 fb4e79f0b2be4d49 00d442d567bacf7b 6defcd5818b050a4 0db6eab9ad76a7f3 49196dcc5d15cc33 69e1181e03d3b24d a9cf120aa7403f40 0e7e4eca532eac24 49ea7fecc41979d0 35a8e4accea38e1b 9a33d733bea2f430 362bd36f68440ccc 4dc3a7f07b7a7c8f cdd02231f69ce357 4568f303d6eb2916 874d09f2d69e15e6 33c80b8ff4e9baa5 6ed3ace0f65afb43 60c372a6fd0d5629 fdb6e3d832ad3d33 d610b243ea22fe66 f21941071a83b252 201705ebc8e8f2a5 cc01112ac8e43428 50a637bb03e511b2 06599b9d4e8e1ebc eb1e820d569e31c5 0d9fccb16c41315f 652615a02603c69f e9ba03e78c64fecc 034aa783adea213b You may notice that these look pretty similar. But they are not the same. The second one is the real subkey, the first one is just a copy of it with errors. If you run a batch GCD analysis on the full PGP key server data you will find a number of such keys (Nadia Heninger has published code to do a batch GCD attack). I don't know how they appear on the key servers, I assume they are produced by network errors, harddisk failures or software bugs. It may also be that someone just created them in some experiment. The important thing is: Everyone can generate a subkey to any PGP key and upload it to a key server. That's just the way the key servers work. They don't check keys in any way. However these keys should pose no threat to anyone. The only case where this could matter would be a broken implementation of the OpenPGP key protocol that does not check if subkeys really belong to a master key. However you won't be able to easily import such a key into your local GnuPG installation. If you try to fetch this faulty sub key from a key server GnuPG will just refuse to import it. The reason is that every sub key has a signature that proves that it belongs to a certain master key. For those faulty keys this signature is obviously wrong. Now here's my personal tie in to this story: Last year I started a project to analyze the data on the PGP key servers. And at some point I thought I had found a large number of vulnerable PGP keys – including the key in question here. In a rush I wrote a mail to all people affected. Only later I found out that something was not right and I wrote to all affected people again apologizing. Most of the keys I thought I had found were just faulty keys on the key servers. The code I used to parse the PGP key server data is public, I also wrote a background paper and did a talk at the BsidesHN conference.
Posted by Hanno Böck
in Code, Cryptography, English, Linux
at
22:46
| Comments (13)
| Trackbacks (4)
Tuesday, April 7. 2015How Heartbleed could've been found
tl;dr With a reasonably simple fuzzing setup I was able to rediscover the Heartbleed bug. This uses state-of-the-art fuzzing and memory protection technology (american fuzzy lop and Address Sanitizer), but it doesn't require any prior knowledge about specifics of the Heartbleed bug or the TLS Heartbeat extension. We can learn from this to find similar bugs in the future.
Exactly one year ago a bug in the OpenSSL library became public that is one of the most well-known security bug of all time: Heartbleed. It is a bug in the code of a TLS extension that up until then was rarely known by anybody. A read buffer overflow allowed an attacker to extract parts of the memory of every server using OpenSSL. Can we find Heartbleed with fuzzing? Heartbleed was introduced in OpenSSL 1.0.1, which was released in March 2012, two years earlier. Many people wondered how it could've been hidden there for so long. David A. Wheeler wrote an essay discussing how fuzzing and memory protection technologies could've detected Heartbleed. It covers many aspects in detail, but in the end he only offers speculation on whether or not fuzzing would have found Heartbleed. So I wanted to try it out. Of course it is easy to find a bug if you know what you're looking for. As best as reasonably possible I tried not to use any specific information I had about Heartbleed. I created a setup that's reasonably simple and similar to what someone would also try it without knowing anything about the specifics of Heartbleed. Heartbleed is a read buffer overflow. What that means is that an application is reading outside the boundaries of a buffer. For example, imagine an application has a space in memory that's 10 bytes long. If the software tries to read 20 bytes from that buffer, you have a read buffer overflow. It will read whatever is in the memory located after the 10 bytes. These bugs are fairly common and the basic concept of exploiting buffer overflows is pretty old. Just to give you an idea how old: Recently the Chaos Computer Club celebrated the 30th anniversary of a hack of the German BtX-System, an early online service. They used a buffer overflow that was in many aspects very similar to the Heartbleed bug. (It is actually disputed if this is really what happened, but it seems reasonably plausible to me.) Fuzzing is a widely used strategy to find security issues and bugs in software. The basic idea is simple: Give the software lots of inputs with small errors and see what happens. If the software crashes you likely found a bug. When buffer overflows happen an application doesn't always crash. Often it will just read (or write if it is a write overflow) to the memory that happens to be there. Whether it crashes depends on a lot of circumstances. Most of the time read overflows won't crash your application. That's also the case with Heartbleed. There are a couple of technologies that improve the detection of memory access errors like buffer overflows. An old and well-known one is the debugging tool Valgrind. However Valgrind slows down applications a lot (around 20 times slower), so it is not really well suited for fuzzing, where you want to run an application millions of times on different inputs. Address Sanitizer finds more bug A better tool for our purpose is Address Sanitizer. David A. Wheeler calls it “nothing short of amazing”, and I want to reiterate that. I think it should be a tool that every C/C++ software developer should know and should use for testing. Address Sanitizer is part of the C compiler and has been included into the two most common compilers in the free software world, gcc and llvm. To use Address Sanitizer one has to recompile the software with the command line parameter -fsanitize=address . It slows down applications, but only by a relatively small amount. According to their own numbers an application using Address Sanitizer is around 1.8 times slower. This makes it feasible for fuzzing tasks. For the fuzzing itself a tool that recently gained a lot of popularity is american fuzzy lop (afl). This was developed by Michal Zalewski from the Google security team, who is also known by his nick name lcamtuf. As far as I'm aware the approach of afl is unique. It adds instructions to an application during the compilation that allow the fuzzer to detect new code paths while running the fuzzing tasks. If a new interesting code path is found then the sample that created this code path is used as the starting point for further fuzzing. Currently afl only uses file inputs and cannot directly fuzz network input. OpenSSL has a command line tool that allows all kinds of file inputs, so you can use it for example to fuzz the certificate parser. But this approach does not allow us to directly fuzz the TLS connection, because that only happens on the network layer. By fuzzing various file inputs I recently found two issues in OpenSSL, but both had been found by Brian Carpenter before, who at the same time was also fuzzing OpenSSL. Let OpenSSL talk to itself So to fuzz the TLS network connection I had to create a workaround. I wrote a small application that creates two instances of OpenSSL that talk to each other. This application doesn't do any real networking, it is just passing buffers back and forth and thus doing a TLS handshake between a server and a client. Each message packet is written down to a file. It will result in six files, but the last two are just empty, because at that point the handshake is finished and no more data is transmitted. So we have four files that contain actual data from a TLS handshake. If you want to dig into this, a good description of a TLS handshake is provided by the developers of OCaml-TLS and MirageOS. Then I added the possibility of switching out parts of the handshake messages by files I pass on the command line. By calling my test application selftls with a number and a filename a handshake message gets replaced by this file. So to test just the first part of the server handshake I'd call the test application, take the output file packed-1 and pass it back again to the application by running selftls 1 packet-1. Now we have all the pieces we need to use american fuzzy lop and fuzz the TLS handshake. I compiled OpenSSL 1.0.1f, the last version that was vulnerable to Heartbleed, with american fuzzy lop. This can be done by calling ./config and then replacing gcc in the Makefile with afl-gcc. Also we want to use Address Sanitizer, to do so we have to set the environment variable AFL_USE_ASAN to 1. There are some issues when using Address Sanitizer with american fuzzy lop. Address Sanitizer needs a lot of virtual memory (many Terabytes). American fuzzy lop limits the amount of memory an application may use. It is not trivially possible to only limit the real amount of memory an application uses and not the virtual amount, therefore american fuzzy lop cannot handle this flawlessly. Different solutions for this problem have been proposed and are currently developed. I usually go with the simplest solution: I just disable the memory limit of afl (parameter -m -1). This poses a small risk: A fuzzed input may lead an application to a state where it will use all available memory and thereby will cause other applications on the same system to malfuction. Based on my experience this is very rare, so I usually just ignore that potential problem. After having compiled OpenSSL 1.0.1f we have two files libssl.a and libcrypto.a. These are static versions of OpenSSL and we will use them for our test application. We now also use the afl-gcc to compile our test application: AFL_USE_ASAN=1 afl-gcc selftls.c -o selftls libssl.a libcrypto.a -ldl Now we run the application. It needs a dummy certificate. I have put one in the repo. To make things faster I'm using a 512 bit RSA key. This is completely insecure, but as we don't want any security here – we just want to find bugs – this is fine, because a smaller key makes things faster. However if you want to try fuzzing the latest OpenSSL development code you need to create a larger key, because it'll refuse to accept such small keys. The application will give us six packet files, however the last two will be empty. We only want to fuzz the very first step of the handshake, so we're interested in the first packet. We will create an input directory for american fuzzy lop called in and place packet-1 in it. Then we can run our fuzzing job: afl-fuzz -i in -o out -m -1 -t 5000 ./selftls 1 @@ We pass the input and output directory, disable the memory limit and increase the timeout value, because TLS handshakes are slower than common fuzzing tasks. On my test machine around 6 hours later afl found the first crash. Now we can manually pass our output to the test application and will get a stack trace by Address Sanitizer: ==2268==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x629000013748 at pc 0x7f228f5f0cfa bp 0x7fffe8dbd590 sp 0x7fffe8dbcd38 READ of size 32768 at 0x629000013748 thread T0 #0 0x7f228f5f0cf9 (/usr/lib/gcc/x86_64-pc-linux-gnu/4.9.2/libasan.so.1+0x2fcf9) #1 0x43d075 in memcpy /usr/include/bits/string3.h:51 #2 0x43d075 in tls1_process_heartbeat /home/hanno/code/openssl-fuzz/tests/openssl-1.0.1f/ssl/t1_lib.c:2586 #3 0x50e498 in ssl3_read_bytes /home/hanno/code/openssl-fuzz/tests/openssl-1.0.1f/ssl/s3_pkt.c:1092 #4 0x51895c in ssl3_get_message /home/hanno/code/openssl-fuzz/tests/openssl-1.0.1f/ssl/s3_both.c:457 #5 0x4ad90b in ssl3_get_client_hello /home/hanno/code/openssl-fuzz/tests/openssl-1.0.1f/ssl/s3_srvr.c:941 #6 0x4c831a in ssl3_accept /home/hanno/code/openssl-fuzz/tests/openssl-1.0.1f/ssl/s3_srvr.c:357 #7 0x412431 in main /home/hanno/code/openssl-fuzz/tests/openssl-1.0.1f/selfs.c:85 #8 0x7f228f03ff9f in __libc_start_main (/lib64/libc.so.6+0x1ff9f) #9 0x4252a1 (/data/openssl/openssl-handshake/openssl-1.0.1f-nobreakrng-afl-asan-fuzz/selfs+0x4252a1) 0x629000013748 is located 0 bytes to the right of 17736-byte region [0x62900000f200,0x629000013748) allocated by thread T0 here: #0 0x7f228f6186f7 in malloc (/usr/lib/gcc/x86_64-pc-linux-gnu/4.9.2/libasan.so.1+0x576f7) #1 0x57f026 in CRYPTO_malloc /home/hanno/code/openssl-fuzz/tests/openssl-1.0.1f/crypto/mem.c:308 We can see here that the crash is a heap buffer overflow doing an invalid read access of around 32 Kilobytes in the function tls1_process_heartbeat(). It is the Heartbleed bug. We found it. I want to mention a couple of things that I found out while trying this. I did some things that I thought were necessary, but later it turned out that they weren't. After Heartbleed broke the news a number of reports stated that Heartbleed was partly the fault of OpenSSL's memory management. A mail by Theo De Raadt claiming that OpenSSL has “exploit mitigation countermeasures” was widely quoted. I was aware of that, so I first tried to compile OpenSSL without its own memory management. That can be done by calling ./config with the option no-buf-freelist. But it turns out although OpenSSL uses its own memory management that doesn't defeat Address Sanitizer. I could replicate my fuzzing finding with OpenSSL compiled with its default options. Although it does its own allocation management, it will still do a call to the system's normal malloc() function for every new memory allocation. A blog post by Chris Rohlf digs into the details of the OpenSSL memory allocator. Breaking random numbers for deterministic behaviour When fuzzing the TLS handshake american fuzzy lop will report a red number counting variable runs of the application. The reason for that is that a TLS handshake uses random numbers to create the master secret that's later used to derive cryptographic keys. Also the RSA functions will use random numbers. I wrote a patch to OpenSSL to deliberately break the random number generator and let it only output ones (it didn't work with zeros, because OpenSSL will wait for non-zero random numbers in the RSA function). During my tests this had no noticeable impact on the time it took afl to find Heartbleed. Still I think it is a good idea to remove nondeterministic behavior when fuzzing cryptographic applications. Later in the handshake there are also timestamps used, this can be circumvented with libfaketime, but for the initial handshake processing that I fuzzed to find Heartbleed that doesn't matter. Conclusion You may ask now what the point of all this is. Of course we already know where Heartbleed is, it has been patched, fixes have been deployed and it is mostly history. It's been analyzed thoroughly. The question has been asked if Heartbleed could've been found by fuzzing. I'm confident to say the answer is yes. One thing I should mention here however: American fuzzy lop was already available back then, but it was barely known. It only received major attention later in 2014, after Michal Zalewski used it to find two variants of the Shellshock bug. Earlier versions of afl were much less handy to use, e. g. they didn't have 64 bit support out of the box. I remember that I failed to use an earlier version of afl with Address Sanitizer, it was only possible after a couple of issues were fixed. A lot of other things have been improved in afl, so at the time Heartbleed was found american fuzzy lop probably wasn't in a state that would've allowed to find it in an easy, straightforward way. I think the takeaway message is this: We have powerful tools freely available that are capable of finding bugs like Heartbleed. We should use them and look for the other Heartbleeds that are still lingering in our software. Take a look at the Fuzzing Project if you're interested in further fuzzing work. There are beginner tutorials that I wrote with the idea in mind to show people that fuzzing is an easy way to find bugs and improve software quality. I already used my sample application to fuzz the latest OpenSSL code. Nothing was found yet, but of course this could be further tweaked by trying different protocol versions, extensions and other variations in the handshake. I also wrote a German article about this finding for the IT news webpage Golem.de. Update: I want to point out some feedback I got that I think is noteworthy. On Twitter it was mentioned that Codenomicon actually found Heartbleed via fuzzing. There's a Youtube video from Codenomicon's Antti Karjalainen explaining the details. However the way they did this was quite different, they built a protocol specific fuzzer. The remarkable feature of afl is that it is very powerful without knowing anything specific about the used protocol. Also it should be noted that Heartbleed was found twice, the first one was Neel Mehta from Google. Kostya Serebryany mailed me that he was able to replicate my findings with his own fuzzer which is part of LLVM, and it was even faster. In the comments Michele Spagnuolo mentions that by compiling OpenSSL with -DOPENSSL_TLS_SECURITY_LEVEL=0 one can use very short and insecure RSA keys even in the latest version. Of course this shouldn't be done in production, but it is helpful for fuzzing and other testing efforts.
Posted by Hanno Böck
in Code, Cryptography, English, Gentoo, Linux, Security
at
15:23
| Comments (3)
| Trackbacks (4)
Defined tags for this entry: addresssanitizer, afl, americanfuzzylop, bufferoverflow, fuzzing, heartbleed, openssl
Sunday, March 15. 2015Talks at BSidesHN about PGP keyserver data and at Easterhegg about TLS
Just wanted to quickly announce two talks I'll give in the upcoming weeks: One at BSidesHN (Hannover, 20th March) about some findings related to PGP and keyservers and one at the Easterhegg (Braunschweig, 4th April) about the current state of TLS.
A look at the PGP ecosystem and its keys PGP-based e-mail encryption is widely regarded as an important tool to provide confidential and secure communication. The PGP ecosystem consists of the OpenPGP standard, different implementations (mostly GnuPG and the original PGP) and keyservers. The PGP keyservers operate on an add-only basis. That means keys can only be uploaded and never removed. We can use these keyservers as a tool to investigate potential problems in the cryptography of PGP-implementations. Similar projects regarding TLS and HTTPS have uncovered a large number of issues in the past. The talk will present a tool to parse the data of PGP keyservers and put them into a database. It will then have a look at potential cryptographic problems. The tools used will be published under a free license after the talk. Update: Source code A look at the PGP ecosystem through the key server data (background paper) Slides Some tales from TLS The TLS protocol is one of the foundations of Internet security. In recent years it's been under attack: Various vulnerabilities, both in the protocol itself and in popular implementations, showed how fragile that foundation is. On the other hand new features allow to use TLS in a much more secure way these days than ever before. Features like Certificate Transparency and HTTP Public Key Pinning allow us to avoid many of the security pitfals of the Certificate Authority system. Update: Slides and video available. Bonus: Contains rant about DNSSEC/DANE. Slides PDF, LaTeX, Slideshare Video recording, also on Youtube
Posted by Hanno Böck
in Cryptography, English, Gentoo, Life, Linux, Security
at
13:16
| Comments (0)
| Trackback (1)
Defined tags for this entry: braunschweig, bsideshn, ccc, cryptography, easterhegg, encryption, hannover, pgp, security, talk, tls
Monday, February 23. 2015Software Privdog worse than Superfish
tl;dr There is a software called Privdog. It totally breaks HTTPS security in a similar way as Superfish.
In case you haven't heard it the past days an Adware called Superfish made headlines. It was preinstalled on Lenovo laptops and it is bad: It totally breaks the security of HTTPS connections. The story became bigger when it became clear that a lot of other software packages were using the same technology Komodia with the same security risk. What Superfish and other tools do is that it intercepts encrypted HTTPS traffic to insert Advertising on webpages. It does so by breaking the HTTPS encryption with a Man-in-the-Middle-attack, which is possible because it installs its own certificate into the operating system. A number of people gathered in a chatroom and we noted a thread on Hacker News where someone asked whether a tool called PrivDog is like Superfish. PrivDog's functionality is to replace advertising in web pages with it's own advertising "from trusted sources". That by itself already sounds weird even without any security issues. A quick analysis shows that it doesn't have the same flaw as Superfish, but it has another one which arguably is even bigger. While Superfish used the same certificate and key on all hosts PrivDog recreates a key/cert on every installation. However here comes the big flaw: PrivDog will intercept every certificate and replace it with one signed by its root key. And that means also certificates that weren't valid in the first place. It will turn your Browser into one that just accepts every HTTPS certificate out there, whether it's been signed by a certificate authority or not. We're still trying to figure out the details, but it looks pretty bad. (with some trickery you can do something similar on Superfish/Komodia, too) There are some things that are completely weird. When one surfs to a webpage that has a self-signed certificate (really self-signed, not signed by an unknown CA) it adds another self-signed cert with 512 bit RSA into the root certificate store of Windows. All other certs get replaced by 1024 bit RSA certs signed by a locally created PrivDog CA. US-CERT writes: "Adtrustmedia PrivDog is promoted by the Comodo Group, which is an organization that offers SSL certificates and authentication solutions." A variant of PrivDog that is not affected by this issue is shipped with products produced by Comodo (see below). This makes this case especially interesting because Comodo itself is a certificate authority (they had issues before). As ACLU technologist Christopher Soghoian points out on Twitter the founder of PrivDog is the CEO of Comodo. (See this blog post.) We will try to collect information on this and other simliar software in a Wiki on Github. Discussions also happen on irc.ringoflightning.net #kekmodia.) Thanks to Filippo, slipstream / raylee and others for all the analysis that has happened on this issue. Update/Clarification: The dangerous TLS interception behaviour is part of the latest version of PrivDog 3.0.96.0, which can be downloaded from the PrivDog webpage. Comodo Internet Security bundles an earlier version of PrivDog that works with a browser extension, so it is not directly vulnerable to this threat. According to online sources PrivDog 3.0.96.0 was released in December 2014 and changed the TLS interception technology. Update 2: Privdog published an Advisory.
(Page 1 of 5, totaling 64 entries)
» next page
|
About meYou can find my web page with links to my work as a journalist at https://hboeck.de/.
You may also find my newsletter about climate change and decarbonization technologies interesting. Hanno Böck mail: hanno@hboeck.de Hanno on Mastodon Impressum Show tagged entries |