
Session-Cookies and SSL

Johannes Böck, www.hboeck.de

December 29, 2008

Study research project at the EISS (European Institute for system security),
University of Karlsruhe

http://iaks-www.ira.uka.de/eiss/

1

Hiermit erkläre ich, Johannes Böck, dass ich diese Studienarbeit selbständig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe.

Karlsruhe, December 29, 2008

Johannes Böck

2

Contents

1 Introduction 5

2 Protocols 5
2.1 ISO / OSI layer model . 5
2.2 Transmission Control Protocol 6
2.3 Hypertext Transfer Protocol (HTTP) 6

2.3.1 HTML Forms, GET and POST data 7
2.3.2 Cookies . 8
2.3.3 Cookies for sessions . 8

2.4 SSL / TLS and HTTPS . 9
2.4.1 SSL connections on a cryptographic level 9
2.4.2 Certificates . 9

3 Attacks on Sessions 10
3.1 Sniffing . 10
3.2 Session hijacking . 11
3.3 Forwarding traffic to SSL . 11

4 An attack on SSL-secured sessions 12
4.1 Publications about SSL-Session hijacking 12
4.2 Disabling HTTP will not help . 12
4.3 HTTP basic access authentication (HTTP auth) 13
4.4 Attack step by step . 13
4.5 Solution: Code example in PHP 15
4.6 Hybrid solution . 15

5 Examples 16
5.1 Menalto Gallery, Mantis, Squirrelmail 16
5.2 Drupal . 16
5.3 Serendipity . 17
5.4 Wordpress . 17
5.5 eBay . 18
5.6 Other examples for attacks against sessions 18

5.6.1 Cross Site Scripting (XSS) 18
5.6.2 Cross Site Request Forgery (CSRF) 19

6 Conclusion 20
6.1 Severity . 20
6.2 Measurements . 20
6.3 An alternative to HTTP? . 20

3

A Used tools 21
A.1 CookieMonster extension for Firefox 21
A.2 Add N Edit Cookies (AnEC) extension for Firefox 22
A.3 Wireshark . 22
A.4 surfjack . 22

B Sources 22

C License 22

4

1 Introduction

Web security is an important topic today. While websites were primarily in-
vented to deliver content, today they are used for complex applications, often
bound to very sensible information and actions (like bank account management).

In 2006, the NIST (National Institute for Standards and Technology in the
USA) that delivers identifiers (the CVE numbers) for software vulnerabilities,
provided a report with the title “Vulnerability Type Distributions in CVE”
[1]. The number one vulnerability changed from Buffer Overflows to Cross Site
Scripting (XSS) in 2005, number two were SQL injections. Both Cross Site
Scripting and SQL injections are vulnerabilities in web applications.

In 2007 and 2008, the security of web application sessions over SSL connec-
tions received increasing attention. The interesting fact about it was that even
sessions encrypted with SSL are vulnerable to session hijacking.

These vulnerabilities and attacks will be discussed in this work. In the chap-
ter 2, the protocols needed for sessions in web applications will be discussed.
Chapter 3 will describe network sniffing and simple attacks on unencrypted ses-
sions. Chapter 4 will be the main part of this work and will describe possibilities
of attacking SSL-secured sessions. Some examples from real-world applications
will be given in 5. In chapter 6, I’ll compare this attack to other problems based
on sessions (CSRF and XSS) and will discuss the general problems of HTTP
and web applications. In the appendix, some tools are listed that were used for
this work.

2 Protocols

2.1 ISO / OSI layer model

The OSI layer model is a common abstract description for the interaction of
network protocols. It has been in development since 1979 as part of the Open
Systems Interconnection (OSI) initiative. It is an official standard by the ISO
(International Organization for Standardization) and the ITU (International
Telecommunication Union) since 1994 with the reference number ITU-T X.200
[2].

The OSI layer model defines seven layers of abstractions to design complex
networking environments. The lowest layer is the plain transfer of bits through
a physical medium (layer 1). The basic idea is that when working on a layer,
one can expect that the lower layers just work as intended and the layer directly
below can be used. It should also be possible to replace technology in one layer
to fit new requirements without having to change technology in the other layers.

There are some relevant differences between the theory of the ISO / OSI
model and what is used in the TCP/IP-based Internet (cf. table 1). The TCP
protocol is on Layer 4 of the OSI model, the HTTP protocol on Layer 7. The
OSI model knows a Session Layer, which is Layer 5. HTTP connections are
stateless, so they know no sessions. To use sessions, one has to emulate them

5

Layer OSI model World Wide Web
1 Physical Ethernet
2 Link
3 Network IP
4 Transport TCP
5 Session
6 Presentation
7 Application HTTP

Table 1: Comparison of the OSI layer model with the World Wide Web

with further technologies.
There are basically two methods, one based on HTTP authentication and the

other based on POST data in combination with cookies. HTTP authentication
has a number of limitations, for example it is impossible to end a session without
exiting the browser, so it is is rarely used these days. The main focus of this
work will be on the POST data / cookies method.

2.2 Transmission Control Protocol

The Transmission Control Protocol (TCP) is a protocol on the transport layer
(Layer 4, cf. 2.1) in the Internet [3]. Most application protocols used in the
Internet are TCP-based, like POP3, SMTP, HTTP, XMPP.

To distinguish between different TCP-based protocols, every TCP service
has a so-called port to identify different services running on the same host. All
protocols have a default port assigned to, though it is still possible to run them
on a different port. For the protocols discussed in this paper, the default ports
are 80 (HTTP) and 443 (HTTPS).

2.3 Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (abbreviation HTTP) is a protocol on the
Application Layer (Layer 7, cf. 2.1) and is the main protocol used in today’s
Internet communication.

The original HTTP protocol [4] was invented as a simple protocol for file
transfer. It had no major interaction capabilities. POST-Variables were added
1996 in HTTP/1.0 [5], cookies in 1997 [6]. The first JavaScript [7] implementa-
tion was added 1995.

To understand the problems of web security today, one has to understand
the history of HTTP. Its original purpose was to serve static content in the form
of HTML-pages and images. The World Wide Web was originally not designed
for interaction. Today, this is completely different. Pretty much every modern
web page has some kind of interaction, like individual start pages for each visitor
depending on his previous visits, his language or his used web software.

6

Even further, there is a step towards complex web applications. Web mailers
are a common example. Today there are even efforts to bring classic desktop
and office applications to the web.

This leads to many security issues that need nontrivial workarounds by the
application designer. The most well-known problems are Cross Site Scripting
(abbreviation XSS) and Cross Site Request Forgery (CSRF).

HTTP is a stateless protocol. Stateless means that every HTTP request is
an independent action unrelated to any previous requests. The server does not
remember anything from previous connections.

A typical HTTP interaction works like this: The client sends a one line
request (usually through TCP-port 80) followed by a number of optional headers
(listing 1). The request consists of the request method (GET is a simple request,
POST is for sending data from the client to the server, HEAD is for debugging
purposes, other methods exist for special applications), the path of the requested
file (here /index.html) and the protocol version (here HTTP/1.1). It is finished
by two newlines. The reply contains a line with the HTTP status code (200
for a common OK) followed by some optional header lines, also terminated by
two newlines (listing 2). After that, the real content (depending on the kind of
request and answer) follows.

Listing 1: Simple HTTP request
GET /index.html HTTP /1.1
Host: www.somehost.com

Listing 2: Simple HTTP reply
HTTP /1.1 200 OK
Server: Apache /2.2.10 (Unix) PHP /5.2.6
Content -Length: 65
Content -Language: en
Content -Type: text/html
Connection: close

<html ><head ><title >Test </title ></head >
<body >Hello </body ></html >

2.3.1 HTML Forms, GET and POST data

The Hypertext Markup Language (HTML) is the common format for publishing
content in the World Wide Web. It has some elements for further interaction
with the HTTP protocol.

HTML knows the <form> tag that can be used to create forms that transfer
their data to an application on the server. A typical login form can be seen in
listing 3.

Listing 3: HTML login form
<form action ="send.php" method ="POST">

7

Username: <input type="text" name=" username" />
Password: <input type=" password" name=" password" />
</form >

This will present the user a simple login form with two fields for Username
and Password. This data is afterwards transferred with a POST request to the
file send.php on the server.

The difference between GET and POST variables is that GET-variables are
transferred inside the URL (like http://www.example.com/?variable=value),
while POST data is transferred through the HTTP request body. This some-
times leads to the false assumption that POST variables provide better security,
for example against Cross Site Request Forgery. This is usually not the case, as
all attack vectors relying on GET variables can somehow be transferred (mostly
through JavaScript) to work with POST variables as well (cf. [8]).

2.3.2 Cookies

In 1997, RFC 2109 introduced the HTTP State Management Mechanism [6],
known as cookies. Cookies give applications running on a web server the possi-
bility to store data on the client’s web browser.

A cookie consists of a simple key/value pair. The server sends Cookies inside
the HTTP header to the client. If cookies are set, the client will send them back
with any connection it makes to the same host. It is also possible to read and
set cookies with JavaScript.

Cookies follow the “same origin policy”, that means one cookie belongs to
a single hostname. It is crucial for the security of cookies that they can not be
accessed by any foreign application or adversary.

Cookies can also be restricted on a specific path on the web server, for
example a cookie defined for the path /admin/ will be sent on a request http:
//samplesite.com/admin/, but not for http://samplesite.com/user/.

Cookies are sent before any other HTML-data is transferred. This is crucial
for parts of the attack described later in this document.

Listing 4: HTTP reply header with cookie
HTTP /1.1 200 OK
Server: Apache /2.2.10 (Unix) PHP /5.2.6
Content -Length: 65
Content -Language: en
Content -Type: text/html
Set -Cookie: Cookie1=test; expires=Fri , 17-Dec -2010

13:02:14 GMT; path =/;
Connection: close

2.3.3 Cookies for sessions

Most web applications use cookies to handle sessions.

8

After a user enters some login data into a form (cf. listing 3), the application
on the server checks if that login data is valid. The application then creates a
session (it needs some internal storage for this) for that user with information
about the user’s rights and data. This session gets an ID assigned (called the
session ID), which is a random value. It is important that this value is not
predictable by an adversary. There have been attacks against web applications
in the past based on weak random number generators [9].

The application sends the session ID back to the user as a cookie. This may
look like SESSID=a38e3b0e51932347294581c5dbb70d80.

With every request, the user sends the session ID back to the server. We
can see that the whole security of the session relies on the fact that the session
ID is only known by the server application and the user’s web browser. If an
adversary learns the session ID, he can add it to his browser and hijack the
session of the victim.

2.4 SSL / TLS and HTTPS

Plain protocols on the application layer usually do not use any encryption. SSL
is a protocol to provide encrypted communication for existing plain-text proto-
cols. It can be added between the transport and the application layer for every
TCP-based protocol. The SSL-enabled protocol is usually marked with an end-
ing S, so POP3 becomes POP3S, SMTP becomes SMTPS and HTTP becomes
HTTPS. SSL-enabled protocols have other ports defined. HTTP usually runs
on port 80, HTTPS on port 443.

TLS is the successor of SSL. For this work, the difference is irrelevant, so
when writing SSL, it means both SSL / TLS. The sometimes used STARTTLS-
method (which is on a different layer) is never used for HTTP in real-world-
scenarios.

The current version of SSL / TLS is defined in RFC 4346 [10].
If we have some application where security is crucial (bank applications, web

shops), we need SSL to ensure that sniffing (cf. 3.1) of data and session IDs is
not possible.

2.4.1 SSL connections on a cryptographic level

SSL connections usually start with a handshake where one or both partners
authenticate with a public key certificate.

After that, a session key is generated. There are two ways for that, depending
on the SSL algorithm used. In one case, the key is just generated by one party
and sent encrypted to the other. Preferable are SSL-methods that do a signed
Diffie-Hellman key exchange, because this provides Perfect Forward Secrecy
(PFS, cf. F.1.1.2 in [10]).

2.4.2 Certificates

SSL is based on certificates defined in the X.509 standard [11].

9

SSL-connections can only be negotiated if at least the server part has a
certificate. Common web browsers check the validity of the server certificate
against a list of trusted authorities. A party running a website can buy certifi-
cates from such a trusted authority.

If the website does not have a certificate by such an authority, the browser
throws a warning. In recent versions of the webbrowser Firefox, it became much
more difficult for the user to connect to a website with an unknown certificate
issuer (so-called self-signed certificate).

This concept is often criticised, because it can force website operators to use
less security (no SSL at all) if they can’t afford to buy a certificate. An alterna-
tive would be a CA that issues certificates for free and checks the identity of the
certificate owner by volunteers. A project for such an authority is CAcert.org.

3 Attacks on Sessions

3.1 Sniffing

Sniffing in a security context means that an adversary reads and analyzes the
network traffic of a victim. In their original form, the common Internet protocols
all consist of plain text that is transferred unencrypted through the Internet.
SSL is often used to prevent this.

Again this is a reminder of the history of the Internet: It was never designed
to provide secret communication, SSL was added later on to secure protocols
that were (and often still are) just plain text protocols.

Sniffing tools just read the network traffic. In ethernet setups with a hub,
all network traffic is transferred to all computers. It is the job of the client to
know if the traffic is meant for him or for some other client in the same network.
So a sniffing tool just has to read all traffic.

In networks with a switch (which is the modern replacement for a hub),
this has changed. Sniffing in switched networks is a bit more complex, but still
possible. The decision of the switch where network traffic is routed is based on
the MAC address. The MAC address can easily be faked. Sniffing attacks on
switched networks are also called ARP spoofing [12].

In wireless networks, sniffing is more like in hub networks. Every member
of a network can read all network traffic.

Obviously, it does not matter if the adversary is in the client’s or server’s
network.

Another possibility for sniffing is on some of the routing machines. An
adversary who has access to a router at an Internet service provider between
the client and the server (either through physical access or through a hacked
machine) can also read network traffic. The same is true if the adversary is
within some network of one of the routing machines.

An unlikely case could also be that the adversary is in some way able to
manipulate an IP routing protocol at some point to force a routing machine to
forward traffic to him.

10

3.2 Session hijacking

As the security of HTTP-sessions completely relies on the cookie to be secret, an
adversary who can read the victim’s unencrypted network traffic is easily able
to take over the session. A simple approach would be just reading the cookie
in plain text with some network sniffing program like Wireshark (cf. A.3) and
manually add the cookie to the web browser.

Some session frameworks also check that one session can only be used by one
IP. This makes the attack sometimes less feasible, though an adversary who is
able to read network traffic is often also able to fake the victim’s IP or already
has the same (for example in a NAT network where several clients share the
same public IP).

3.3 Forwarding traffic to SSL

For web applications that require security it is advisable to forward all HTTP
access to HTTPS on the server side. For the Apache web server, a configuration
could look like listing 5. What happens is that connections on plain HTTP (port
80) all get not a normal HTTP reply with status code 200, but a reply with
status code 403, which stands for “Redirect Permanently”.

Listing 5: Apache configuration forwarding to HTTPS
<VirtualHost *:80>
RedirectPermanent / https :// servername.com/
ServerName servername.com

</VirtualHost >
<VirtualHost *:443>
SSLEngine on
SSLCertificateFile /etc/apache2/ssl/server.crt
SSLCertificateKeyFile /etc/apache2/ssl/server.key
ServerName servername.com
DocumentRoot "/var/www/servername.com/htdocs"

</VirtualHost >

For some applications, it is more feasible to only forward specific URLs. An
example would be a weblog system. Normal visitors that only read do not need
any secure access, but the login for authors should be encrypted. Apache can
achieve this through the mod rewrite module (cf. .htaccess example in listing
6, it forwards all access to URLs inside the /admin directory to HTTPS).

Listing 6: .htaccess to forward subdir to HTTPS
RewriteEngine On
RewriteCond %{ REQUEST_URI} ^/admin .*
RewriteCond %{HTTPS} off
RewriteRule (.*) https ://%{ HTTP_HOST }/$1 [R=302]

11

4 An attack on SSL-secured sessions

One may think at a first glance that forwarding all HTTP-traffic to HTTPS
will avoid session sniffing. This is not the case.

Assuming a user has an open session on some web application. The cookie
is already part of the HTTP request, so a single HTTP request to the same
host will transfer the cookie unencrypted over the network, even if it is only
answered by some HTTP forward.

There are various ways of social engineering that allow to get a user to open
an HTTP connection. A simple approach would be giving him some link that
contains an image or <iframe> tag that refers to some HTTP URL on the host
to be attacked.

An <iframe> tag can be used to embed a web page as a box inside another
web page. Though one can send the victim a harmless looking URL on another
host, which will trigger the connection intended by the adversary.

The cookie specification in RFC 2109 knows a flag “Secure”, which can
be appended to any cookie. The attribute means that the cookie shall only
be transferred through a secure connection. The RFC does not define what
a secure connection is. On all modern browsers this is interpreted that the
cookie shall only be transferred through HTTPS connections. Thus this prevents
unencrypted cookie transfer. So setting this flag can stop the described attack.

4.1 Publications about SSL-Session hijacking

In September 2007, the US Cert published an advisory on a couple of popular
web sites describing the vulnerability above [13]. The advisory did not get much
attention.

This changed 2008 with two publications. Sandro Gauci [14] presented Surf-
Jack, an easy to use tool to hijack sessions. Nearly at the same time, Mike Perry
announced a talk about the subject on the DEFCON 16.

4.2 Disabling HTTP will not help

One solution one would think of to prevent such attacks would be just running
HTTPS on one IP. Thus, if there is for example https://securesite.com/, a
connection to http://securesite.com/ would already stop on the TCP layer.
Thus the HTTP headers (and with it the cookie) will not be sent.

This approach does not help. An adversary could then just force the vic-
tim to open an URL like http://securesite.com:443/. This would open an
HTTP connection on the HTTPS port, which will obviously only lead to some
error. Though the adversary has reached his goal, as the first part of the HTTP
connection is transferred unencrypted and the cookie can be sniffed.

12

4.3 HTTP basic access authentication (HTTP auth)

Beside the method with cookies, HTTP also knows its own method for authen-
tication and sessions. It is described in chapter 11 of RFC 1945 [5] and often
just called HTTP auth.

Unlike cookies (which have the “same origin” policy), the HTTP auth method
is bound to URLs. An authenticated session for https://somesite.com/app/
will apply to all URLs below that (e. g. https://somesite.com/app/test.
php), but not on e. g. https://somesite.com/test/. It also does not apply on
a protocol change, thus a session on an HTTPS URL will never be transferred
through an HTTP request.

Therefore the above attack scenario is most probably no threat to direct
HTTP authentication. It may be worth deeper research if a similar attack is
possible on HTTP authentication.

4.4 Attack step by step

To illustrate better how the attack works this section gives a step-by-step ex-
ample for session hijacking. The example is based on the content management
system Drupal, which is still vulnerable (cf. 5.2) to this kind of attack.

Assume we have user Alice (the victim) and user Eve (the adversary). Both
are on the same network. To replicate the attack, this can also be done on
the same client with different browsers, different users running the browser or
virtualization environments - the attack works exactly the same way here.

Eve will use the sniffing tool Wireshark (cf. A.3) and the Add N Edit Cookies
(AnEC) extension for Firefox (cf. A.2).

We have samplesite.com, which contains a plain Drupal 6.6 installation.
Alice has an administration account on it.

As Alice cares about security, she always logs in via HTTPS. So she calls
https://samplesite.com/user and enters her user name and password. She’s
logged in and creates some content.

While that is happening, Eve starts Wireshark and records the network
traffic.

After Alice is done with her work on the web page, she wants to see how
it looks. She calls the normal page with http://samplesite.com/, thinks it
looks fine and is finished with her work on it.

When this is happening, Eve will notice some HTTP connections to sample-
site.com in her Wireshark. She now looks up the first GET request, which has
the string “GET / HTTP/1.1” in the “Info”-column.

13

As you can see on the screenshot, the HTTP package contains a line saying:

Cookie: SESSd07d71aeede746f64f93cf1503bdb3b6 =35
cf7263819b2cd49115c9239d22b462

Now, Eve starts the Firefox webbrowser with the AnEC extension (cf. Ap-
pendix). With this extension, there is a menu point “Cookie Editor” under
“Extras”. There, Eve can add a new cookie.

In the Name-field, she adds SESSd07d71aeede746f64f93cf1503bdb3b6, in
the Content field 35cf7263819b2cd49115c9239d22b462. Host is samplesite.com
and Path /, rest stays default. After saving that cookie, Eve calls http:
//samplesite.com/. Eve is logged in with an administrator account and can
start modifying content.

14

4.5 Solution: Code example in PHP

PHP knows a function session_set_cookie_params. Starting with PHP 4.x.x,
it has a method to set the secure flag on session cookies.

A simple approach would be to look for the session_start function and
add some code before it.

Listing 7: PHP code for secure sessions
if ($_SERVER[’HTTPS ’])
session_set_cookie_params(0, ’/’, ’’, true , true);

else
session_set_cookie_params(0, ’/’, ’’, false , true);

At first, we check if the server variable HTTPS is set. If this is the case,
we are running on an SSL secured connection. The first three parameters to
session_set_cookie_params are just the defaults. The fourth parameter spec-
ifies if we want to have secure cookies. The fifth restricts cookies to be inacces-
sible by JavaScript. This is generally a good idea, as it makes XSS and CSRF
attacks harder.

Obviously this only applies to applications using the session extension in-
cluded in PHP. Many applications do their own session management and need
to take care of that. It is advisable to only do this if there is a strong reason and
if the programmers have a deep knowledge of the security aspects of sessions.

4.6 Hybrid solution

From a security point of view, it’s the easiest and preferrable option to fully run
sessions over HTTPS and set the secure flag for every cookie.

15

For large scale applications, this is a problem as SSL encryptions are per-
formance expensive. On the client side, the performance impact is negligible.
But on servers with a large amount of parallel connections, the cost for SSL
encryption matters. Many large scale web pages (like amazon.com) only en-
crypt the login process and certain crucial actions. The normal session runs
over unencrypted HTTP. This obviously has an impact on privacy.

A proper hybrid solution does the login over HTTPS and set’s two cookies
from which one has the secure flag set. After that, the user is forwarded to
HTTP. As soon as some crucial action is done (for example buying an item),
the application does a single HTTPS connection for that action and verifies
the cookie with the secure flag. With such a design, an adversary could gather
information about what the user is doing, but he cannot hijack the session.
This reduces the costs for server performance to a minimum by giving up some
privacy, but still providing secure authentication.

5 Examples

In August 2008, I had a look at some common web applications, especially
the ones I was using myself. A useful tool for that was the Firefox extension
CookieMonster (cf. Appendix A.1).

I found four applications vulnerable to that class of attacks. I contacted the
developers in August 2008 with mixed results.

5.1 Menalto Gallery, Mantis, Squirrelmail

The developers of Menalto Gallery, Mantis (bugtracker) and Squirrelmail (web-
mail) all fixed the session hijacking issue after my report. I had the best expe-
rience with the developers of Menalto Gallery, they coordinated the disclosure
timeline with me and released an updated version [15]. Both the developers of
Mantis [16] and Squirrelmail [17] released an updated version after I released a
public advisory.

5.2 Drupal

I found the same session hijacking issue also in the popular Drupal Content
Management System [18]. The Drupal team decided that they do not consider
this an issue in their application and have not provided a fix yet. Their reaction,
which can be found at http://drupal.org/node/315703, is:

“[...] we consider that this is a configuration problem. It’s your
responsibility to set session.cookie secure in the SSL virtual host if
you want an SSL-only website.”

Their statement concludes that if someone wants protection against session
sniffing, it is up to the user to configure the environment to set the secure flag.

16

PHP has an option to enforce secure cookies that can be set within the web
server or via htaccess. This has, however, some disadvantages.

Setting this option will let PHP set the secure flag on all session cookies,
which means that a user has no option to open a session without SSL. There are
lot’s of possible hybrid situations where one might want to have some normal
web page usage without SSL (e. g. for performance reasons or because one has
no payed certificate and does not want normal users to fiddle with certificate
issues).

The other problem is that a user might not be able to set PHP options for
a virtual host. Drupal is a common PHP CMS, which is probably mainly used
in shared hosting environments. For such users it is impossible to get secure
sessions on Drupal without modifying the code.

5.3 Serendipity

The Serendipity weblog system has a hybrid solution. It generates a normal
PHP session for every user accessing the page and stores things like the entered
name in the comment field. It also provides the session for plugins, e. g. the
Karma-plugin uses the session.

The PHP session is not setting the secure flag for sessions. This is fine,
as there are no sensitive things one can do with a hijacked Serendipity PHP
session.

If an author / admin of the weblog logs into serendipity, it sets another cookie
named author_token, which contains a hashed random value. For this cookie,
the secure flag is set, so if an author logs in on an SSL-enabled connection,
the cookie is never transferred unencrypted. If the web server is configured to
forward all connections to /admin and /serendipity admin.php to https, it is
guaranteed that the session data is kept safe.

The author_token cookie contains a value independent from the PHP ses-
sion ID. I found no flaw in this design and think it is a well-designed example
for a hybrid solution.

5.4 Wordpress

Starting with version 2.6.0, Wordpress also generates two cookies for authen-
tication. Wordpress stores a value it internally calls salt, which is randomly
generated on session creation. It sets three cookies, one wordpress_logged_in
(which is not secure) and two wordpress_sec (which have the secure flag set).
There are two wordpress_sec cookies because they are restricted to specific
paths on the installation, else they are identical.

The content of the cookies is generated out of a random value and hashed
together with some other values (username, expiration time) using the MD5-
algorithm to the content of the cookie. Considering the oneway functionality of
the hash function is guaranteed (which is a proper assumption, the weaknesses
known to MD5 do not endanger that), that design should be secure.

17

What may be confusing is that the whole security is based on a value they
call salt. In common cryptographic designs, the term salt is not used that way,
it is for a random but usually not a secret value.

5.5 eBay

I did some research on the german page of the popular eBay platform on 2008-
11-28. eBay sets a number of cookies on login. None of them sets the secure
flag, so eBay is completely open to session hijacking.

It has three cookies that seem to be important for the session, s, cid and
npii. A couple of other cookies seem to have no meaning for the session (ds1,
dp1, ns1, shs, ebay, lucky9, nosession), they can be deleted and the user is
still logged in.

With a hijacked session (done with the manual method described above
hijacking the three cookies s, cid and npii), I was able to do a bid on an
article. I was even able to change my personal address.

For some actions ebay requires an extra login that is SSL-secured. This is
done for password changing. It would be a possibility to use this as a security
concept and secure all important actions that way, making it impossible to use
a hijacked session to do any harm. Though, as eBay does not secure bids and
address changing in any way, it is obvious that this is not secure.

It seems that eBay recently changed its way of handling cookies, on a first
look I had some weeks ago, they had two secure cookies set. I have not inves-
tigated that further at that point, so I cannot say if they had a secure cookie
concept.

In April 2008, eBay published a press release stating that they’d improve
security by using Flash cookies if a Flash plugin is installed. Flash cookies are
more or less a duplication of the cookie concept inside the proprietary Flash
system. On my tests, although the Flash plugin was installed, eBay did not set
any Flash cookies.

5.6 Other examples for attacks against sessions

The attack described in this paper has some similiarities to other attacks based
on the fragile design of sessions in the world wide web. I’ll give a short intro-
duction to two very popular examples.

5.6.1 Cross Site Scripting (XSS)

An attack that forces a victim to run some malicious client side script (usually
JavaScript) code in the context of the attacked web application is called Cross
Site Scripting (abbreviation XSS, cf. [19]).

Imagine we have some web application that has some search form. The
search form sends its request with a GET-variable to another script on the
server. Though we have an URL like http://www.some-site.com/search.
php?searchterm=example. If the output page prints the search term without

18

any preprocessing, e. g. a PHP-code like echo "You’ve searched for ".\$\
_GET[’searchterm’];, we have a typical Cross Site Scripting vulnerability.

What an adversary can do now is sending the victim some URL like http://
www.some-site.com/search.php?searchterm=<script>alert(1)</script>,
that will execute JavaScript code in the context of www.some-site.com. The
adversary does not have to send the victim such an URL directly. He could also
send some harmless looking link to his own site which embeds the malicious link
in some way, like within an <iframe> tag.

The above example will just open a bogus alert window. But it could be any
JavaScript code. Especially, if www.some-site.com is using sessions, the URL
could look like this: http://www.some-site.com/search.php?searchterm=
sendcookie. This would transfer the session cookie to malicioussite.com -
the adversary has the session cookie of the victim.

To prevent XSS, it is crucial that a web application never outputs any
content from an unknown source without proper escaping. Escaping means
that all characters with a special meaning in HTML (<, > and &) are trans-
ferred into their HTML-entities (<, >, &). PHP knows the function
htmlspecialchars() for this. Even this is not 100 % secure, as charset issues
can circumvent such escaping.

5.6.2 Cross Site Request Forgery (CSRF)

A Cross Site Request Forgery (abbreviation CSRF) attack is a way to trigger
a certain action in a web application externally through a link. It is quite non-
trivial to prevent CSRF attacks. All methods have at least some disadvantage.

Let’s assume we have some web application for E-mails. It has a list of
mails, each mail contains a link like http://www.mywebmailer.com/delete.
php?mailid=1 to delete the mail. What an adversary could do now is sent the
victim some link that triggers this action. The adversary could, for example,
place small/invisible <iframe> tags on his web page for all mailids from 1 to
1000. If the victim calls the adversarys web page while logged into the web
mailer, all his mails get deleted.

Similar attacks can also be used for pretty much every action inside the web
application of the victim. For example, in an online shop it could be used to
buy some article for a certain address. If the actions use POST instead of GET
variables, the attack get’s more complex, as the adversary has to use JavaScript
to send the data. For nontrivial actions (buying in a web shop may require
several steps), it adds even more complexity to the attack. Though this is no
protection, it just increases the effort needed for an attack.

To prevent CSRF, the common method is to add some token as a hidden
value in all forms that trigger data-changing actions. The web application has
to check the validity of the token before doing any actions. There are various
ways how such a token can be generated. It could be just some random value
where the application stores the kind of action and the token in some table. On
complex applications and long usage sessions, such a table can become pretty
large. Just saving the last token is usually not feasible. This would make parallel

19

usage of web applications in more than one browser window impossible.
A method that combines several advantages looks like this: On session cre-

ation, the web application generates some random value (let’s call it the session
token) that is valid for the whole session. One could use the session ID, but
in certain scenarios, using an independent value is more secure. With every
form, a hash value is generated out of the session token and an identifier for the
action. The script performing the action can check if that token is valid.

An important note: If there is an XSS in a web application, the token-method
to prevent CSRF is useless - the token can be transferred via JavaScript.

The attack known today as CSRF has already been described 1997 in chapter
4.3.5 of RFC 2109 [6]. Nevertheless CSRF still can be considered a vulnerability
that is rarely known today. There are many web applications still vulnerable to
CSRF.

6 Conclusion

6.1 Severity

For a successful attack, the adversary needs to be able to read the network
traffic from the victim. There are various scenarios where this is the case (cf.
3.1).

The most likely case is that the adversary and the victim are in the same
network. This can be in an Internet cafe, at a public wireless hotspot or in a
company. The advantage for the adversary is that in this case he usually already
has the same public IP address through NAT, so any IP-based filtering by the
session management will not stop the attack.

6.2 Measurements

When opening a session, web applications should always check the connection
type (HTTP or HTTPS) and add the secure flag to the session cookie if the
session is HTTPS. This will in almost all cases be the expected behaviour by
the user.

It could be discussed if session frameworks (like the PHP session extension)
should handle this themselves.

Statements like the one from the Drupal team (cf. 5.2) ignoring the security
issues around sessions, are dangerous. Web applications should be shipped in a
way that will make them secure by default, even if an unskilled user uses them.

6.3 An alternative to HTTP?

What we’ve seen in this document:
HTTP is a stateless protocol
and
this is a problem!

20

A large number of security issues in the web rely on this simple fact. We
have workarounds, but on a closer look, they are not more than workarounds
and far away from solid solutions. As long as there are no better alternatives,
one should use secure flags of cookies and set tokens for actions. Though the
question arises if this is the solution on the long term.

The only way to properly fix those issues would be replacing HTTP. I do
not know of any efforts to do that. I doubt such an attempt would gain much
success. Looking at the history of other networking standards (just think of
IPv6), the Internet is very inertial in implementing new technology, even if
there are strong reasons. Replacing HTTP would change the whole basis of
what is called the World Wide Web. Such a change would for example require
all web browsers to be replaced.

It is probably a thing one has to accept about the Internet: It is made up
by poor designs and often inadequate technologies. It is a compromise of what
works and what is available at a time. From a security point of view, this often
leads to unelegant workarounds to keep the whole thing together.

A Used tools

This appendix describes some tools mentioned in this work.

A.1 CookieMonster extension for Firefox

The Firefox web browser has a large number of extensions available. The Cook-
ieMonster extension is very useful to monitor the behaviour of web pages regard-
ing cookies. It allows to open a simple popup listing all cookies on the current
host. As it also shows if the secure flag is set, this is a handy tool to check web
applications if they properly set the secure flag on HTTPS connections.

http://forum.addonsmirror.net/index.php?showtopic=6599

21

A.2 Add N Edit Cookies (AnEC) extension for Firefox

The Add N Edit Cookies (AnEC) extension for Firefox adds a cookie editor to
Firefox. Usually cookies are not meant to be directly manipulated by the user,
so a normal web browser interface has no cookie editing capabilities.

For a cookie hijacking attack, we need to be able to add cookies to our
browser session, the cookie editor of AnEC can do this.

http://addneditcookies.mozdev.org/

A.3 Wireshark

Wireshark (former name Ethereal) is a popular sniffing tool. It has various capa-
bilities to decode known protocols. Though one does not have to search for the
HTTP header inside a bunch of TCP packages, Wireshark already knows TCP
and HTTP and does the decoding. It also has complex filtering capabilities.

http://www.wireshark.org/

A.4 surfjack

With his publications about the SSL session hijacking attack, Sandro Gauci
released a tool called surfjack which automates it. It listens on a network inter-
face and automatically looks for unencrypted cookies. It then provides a proxy
server which can be used by the adversary to set his cookies (avoiding the need
of a cookie editing tool).

http://code.google.com/p/surfjack/
There is a short video tutorial that shows how surfjack works:
http://www.vimeo.com/1507697
During my research, I was unable to get surfjack to work. It is barely

documented, it starts and it looks like it is collecting cookies, but the proxy
page does not show any of them.

B Sources

This work was done with LATEX. For RFC citations, I’ve used the rfc.bib from
http://www.tm.uka.de/~bless/bibrfcindex.html.

C License

This work is licensed under the Creative Commons Attribution 3.0 License, that
means you are free to copy and reuse this work as long as you mention my name
as the source.

http://creativecommons.org/licenses/by/3.0/

22

References

[1] Steve Christey and Robert A. Martin. Vulnerability type distributions
in CVE, 2007. Available from: http://cwe.mitre.org/documents/
vuln-trends/.

[2] International Telecommunication Union. ITU-T X.200 – open systems
interconnection - model and notation, 1994. Available from: http:
//www.itu.int/rec/T-REC-X.200-199407-I/en.

[3] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFCs 1122, 3168. Available from: http://www.ietf.
org/rfc/rfc793.txt.

[4] Tim Berners-Lee. Original HTTP 0.9, 1991. Available from: http://www.
w3.org/Protocols/HTTP/AsImplemented.html.

[5] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol
– HTTP/1.0. RFC 1945 (Informational), May 1996. Available from: http:
//www.ietf.org/rfc/rfc1945.txt.

[6] D. Kristol and L. Montulli. HTTP State Management Mechanism. RFC
2109 (Proposed Standard), February 1997. Obsoleted by RFC 2965. Avail-
able from: http://www.ietf.org/rfc/rfc2109.txt.

[7] ECMA. ECMAScript language specification, 1999. Available from:
http://www.ecma-international.org/publications/files/ECMA-ST/
Ecma-262.pdf.

[8] Robert Auger. The cross-site request forgery (CSRF/XSRF) FAQ, 2008.
Available from: http://www.cgisecurity.com/articles/csrf-faq.
shtml.

[9] NIST and Stefan Esser. CVE-2008-4107 – the rand and mt rand func-
tions in php 5.2.6 do not produce cryptographically strong random num-
bers, 2008. Available from: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2008-4107.

[10] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Available from:
http://www.ietf.org/rfc/rfc5246.txt.

[11] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 3280 (Proposed Standard), April 2002. Obsoleted by RFC 5280,
updated by RFCs 4325, 4630. Available from: http://www.ietf.org/
rfc/rfc3280.txt.

[12] Gibson Research Corporation. ARP cache poisoning, 2005. Available from:
http://www.grc.com/nat/arp.htm.

23

[13] US CERT. Web sites may transmit authentication tokens unencrypted.
Available from: http://www.kb.cert.org/vuls/id/466433.

[14] Sandro Gauci. Surf jack: HTTPS will not safe you, 2008.
Available from: http://enablesecurity.com/2008/08/11/
surf-jack-https-will-not-save-you/.

[15] NIST and Hanno Böck. CVE-2008-3662 - session hijacking in menalto
gallery, sep 2008. Available from: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2008-3662.

[16] NIST and Hanno Böck. CVE-2008-3102 - session hijacking in man-
tis bugtracker, 2008. Available from: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2008-3102.

[17] NIST and Hanno Böck. CVE-2008-3663 - session hijacking in squirrelmail,
sep 2008. Available from: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2008-3663.

[18] NIST and Hanno Böck. CVE-2008-3661 - sessio hijacking in drupal cms, sep
2008. Available from: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2008-3661.

[19] Jason Rafail and CERT Coordination Center. Cross-site scripting vul-
nerabilities, 2001. Available from: http://www.cert.org/archive/pdf/
cross_site_scripting.pdf.

24

